South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

MET 320	HQ 2	Nov 10, 2003
MI 220	Data Sheet Provided	9:00 –9:50 AM

Algebraic solutions are OK. No Calculators

- 1. How much heat is required to raise the temperature of 2 moles of <u>solid</u> Pb at 300 K to <u>liquid</u> Pb at 600 K? Be sure to draw the calculation schematic.
- 2. Find the heat of reaction for the following reaction at 298 K. All reactants and products are pure solids.

 $3 Mn + Cr_2O_3 = 3 MnO + 2 Cr$

- 3. The vapor pressure of ice at its melting point (273 K) is 4.579 Torr (1 mm Hg) and drops to 1.012 Torr at -17.2 C. Determine the heat of sublimation from these data.
- 4. Draw the calculation schematic for determining the Adiabatic Flame Temperature for the combustion of Methane with air. In that combustion one mole of CH_4 burns with two moles of O_2 to form CO_2 and H_2O (balance the reaction!). Since the O_2 is supplied by air, there are also 7.52 moles of N_2 accompanying the process that do not react but go along for the ride. Assume everything starts at 400 K and that you have data for the heats of formation at 298 K only.
- 5. Use the Attached JANAF tables to answer the following questions:
 - a) How much heat is required to raise one gram mole of solid Cu from 298 K to liquid Cu at 1500 K?
 - b) How much heat is required to raise solid Cu from 298 K to hypothetical, solid Cu at 1500 K?
 - c) How much heat is required to vaporize solid Cu at 1000 K to gaseous Cu at 1000 K?
- 6. Real Gas Problem:
 - a) What volume would one gram mole of ideal gas occupy at 304 K and 73 atm?
 - b) What volume would one gram mole of CO₂ gas occupy at 304 K and 73 atm?