SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY DEPARTMENT OF MATERIALS AND METALLURGICAL ENGINEERING

Met 320
HQ 2
Oct 27, 2005
CLOSED BOOK and NOTES - NO CALCULATORS - SHOW ALL WORK ON THIS SHEET DISCARD ALL OTHER WORK SHEETS. If there seems to be an error in the problem statement, suggest a correction and proceed with your assumed correction.

ALWAYS BROWSE THE ENTIRE EXAM FIRST. THEN WORK THE SHORTEST, EASIEST PROBLEMS FIRST. Each problem is worth 16 points.

1. One mole of ideal gas at 2 atm and 300 K is expanded isothermally to 1 atm while in contact with a heat sink at 400 K . Find $\Delta \mathrm{S}$ for the 1) gas and 2) the heat sink if the
a) Expansion is reversible
$\left.\Delta S_{g}=\int_{i}^{f} d S=\int_{i}^{f} \frac{d q}{T_{g}}\right)_{\mathrm{Rev}}=\int_{i}^{f} \frac{d w_{M a x}}{T_{g}}=\int_{i}^{f} \frac{P d V}{T_{g}}=\int_{i}^{f} \frac{n R d V}{V}=n R \ln \left[\frac{V_{f}}{V_{i}}\right]=n R \ln \left[\frac{P_{i}}{P_{f}}\right]=R \ln (2)$
$\left.\Delta S_{S}=\int_{i}^{f} d S=\int_{i}^{f} \frac{d q}{T_{s}}\right)_{\mathrm{Rev}}=\int_{i}^{f} \frac{-d q_{g}}{T_{s}}=-\int_{i}^{f} \frac{P d V}{T_{s}}=-\int_{i}^{f} \frac{n R T_{g} d V}{T_{s} V}=-n R \frac{T_{g}}{T_{s}} \ln \left[\frac{P_{i}}{P_{f}}\right]=-0.75 R \ln (2)$
b) Expansion results in no work being performed.
$\Delta S_{g}=$ same as part a) - State Function
$\left.\Delta S_{S}=\int_{i}^{f} d S=\int_{i}^{f} \frac{d q}{T_{s}}\right)_{\mathrm{Rev}}=\int_{i}^{f} \frac{-d q_{g}}{T_{s}}=-\int_{i}^{f} \frac{0}{T_{s}}=0$
2. On a theoretical basis, how much work must be supplied to a heat pump to move 1000 Joules of heat from a lake at 280 K to a home at $23^{\circ} \mathrm{C}$?

3. Find the configurational entropy change when 30 gram moles of Ag are alloyed with 70 gram moles of Au.

$$
\begin{aligned}
\Delta S^{\text {Mix }} & =-R n_{\text {Total }}\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}\right) \\
& =-100 R(0.3 \ln 0.3+0.7 \ln 0.7)
\end{aligned}
$$

4. Tool Kit Problems:
a) Write the Fundamental equations emanating from the definitions of H, A, and G .
$\mathrm{dU}=\mathrm{TdS}-\mathrm{PdV}$

$$
\begin{aligned}
& \mathrm{H}=\mathrm{U}+\mathrm{PV}, \quad \mathrm{~A}=\mathrm{U}-\mathrm{TS}, \quad \mathrm{G}=\mathrm{H}-\mathrm{TS} \\
& \mathrm{dH}=\mathrm{TdS}-\mathrm{PdV}+\mathrm{PdV}+\mathrm{VdP}=\mathrm{TdS}+\mathrm{VdP} \\
& \mathrm{dA}=\mathrm{TdS}-\mathrm{PdV}-\mathrm{TdS}-\mathrm{SdT}=-\mathrm{PdV}-\mathrm{SdT} \\
& \mathrm{dG}=\mathrm{TdS}+\mathrm{VdP}-\mathrm{TdS}-\mathrm{SdT}=\mathrm{VdP}-\mathrm{SdT}
\end{aligned}
$$

b) What is the Maxwell Relation from $\mathrm{dU}=\mathrm{TdS}-\mathrm{PdV}$?

$$
\left.\left.\frac{\partial T}{\partial V}\right)_{S}=-\frac{\partial P}{\partial S}\right)_{V}
$$

5. Draw a calculation schematic for determining the adiabatic flame temperature for the combustion of CO gas with dry air $\left(21 \% \mathrm{O}_{2}, 79 \% \mathrm{~N}_{2}\right)$ to form CO_{2} gas. The air is preheated to 1000 K . The CO is at 298 K and the only heat of formation data available are at 298 K . Heat capacities are known.

6. Using the JANAF data provided, how much heat would be required to raise one mole of solid Cu at 298 K to pure gaseous Cu at 3000 K ? (It is a good idea to describe briefly how you obtained this number and to mark the data sheet(s) at the appropriate place(s) so partial credit may be assigned in the event your write the answer incorrectly.)

See JANAF Tables: 94.991 Kcal
7. Using the textbook data provided, find the heat of reaction at 500 K for the reaction

$$
\mathrm{Ti}+\mathrm{O}_{2}=\mathrm{TiO}_{2 \text { (rutile) }} .
$$

Complete all steps except the arithmetic.

Cp Data	a	$\mathbf{b X 1 0}^{\mathbf{3}}$	$\mathbf{c X 1 0}{ }^{-5}$
$+\mathrm{TiO}_{\mathbf{2}}$	73.35	3.05	-17.03
-Ti	24.94	6.57	-1.63
$-\mathrm{O}_{\mathbf{2}}$	29.96	4.18	-1.67
$\Delta \mathbf{C p}$	18.45	-7.7	-13.73

$$
\begin{array}{|cl|}
\hline \Delta H_{R, 298 K}=\Delta H_{f, ~ t i o 2,298 K}=-944,000 \text { Joules } \\
\Delta \mathbf{a} & 18.5 \\
\Delta \mathrm{~b} & -7.7 \times 10^{3} \\
\Delta \mathbf{C} & -13.7 \times 10^{-5} \\
\hline
\end{array}
$$

$$
\Delta H_{R, 500 K}^{o}=\Delta H_{R, 298 K}^{o}+\int_{298}^{500} \Delta C p d T=\Delta a(500-298)+\frac{\Delta b}{2}\left(500^{2}-298^{2}\right)-\Delta c\left(\frac{1}{500}-\frac{1}{298}\right)
$$

Copper (Cu)
(Reference State) 4t. 小t. $=63.54$

J
inoper (Cu)

3

Copper (Cu)
(Liquid)

AT. WT. $=63.54$
(IDEAL GAS)
$\Delta H_{f}^{\circ} \quad=80.714 \pm 0.5 \mathrm{kcal} . \mathrm{mole} \mathrm{e}^{-1}$
$\Delta H_{\mathrm{f}}^{\circ} \mathrm{298.15}=81.0 \pm 0.5 \mathrm{kcal} . \mathrm{mole}^{-1}$

Heat of Pormation.
Oround State Configuration ${ }^{2} \mathrm{~S}_{1 / 2}$
COPPER

15. E. Beur and R. Brunner, Helv. Chem. Acta, 17, 958 (1934)

[^0]Heat Capacity and Entropy.

[^1]

[^0]: The first eight references may be considered to have reasonable drifte and second and third law agreement. The
 11 ttie higher averaging 81.4 kcal. mole ${ }^{-1}$, the single transport determination is at 80.55 kcal . mole ${ }^{-1}$. If the
 evaporation coefficient is not unity in the Langmulr experimenta then one would observe lower pressures and higher neats of sublimation, thus it appears that the coefficient must be unity and that all techniques are measuring
 valid heats of sublimation. A value of $81 \pm 0.5 \mathrm{kcal}$. mol e^{-1} was chosen weighted toward the more precise Knudsen valid heats of sublimation. A value of $81 \pm 0.5 \mathrm{kcal}$. mole e^{-1} was chosen weighted toward the more precise Knudsen
 work of Hersh.

[^1]:

