South Dakota School of Mines and Technology

Department of Materials Metallurgical Engineering

SEE DATA SHEET AT END OF EXAM - NO CALCULATORS - CLOSED BOOK AND NOTES
If a problem seems to be in error, state the trouble, state an assumed correction, and proceed.

1. Write the Big 6 Equations.
$\mu_{i}=\mu_{i}^{o}+R T \ln p_{i}$
$\mu_{i}=\mu_{i}^{o}+R T \ln \left(p_{i} \gamma_{i}\right)--o r \ln \left(f_{i}\right)$
$\mu_{i}=\mu_{i}^{o}+R T \ln x_{i}$
$\mu_{i}=\mu_{i}^{o}+R T \ln \left(x_{i} \gamma_{i}\right)--o r \ln \left(a_{i}\right)$
$\mu_{i}=\mu_{i}^{o}+R T \ln [i]_{i}$
$\mu_{i}=\mu_{i}^{o}+R T \ln \left([i]_{i} \gamma_{i}\right)--o r \ln \left(a_{i}\right)$
2. Short answer:
a) What is the difference between $\Delta \mathrm{G}$ and $\Delta \mathrm{G}^{\circ}$?

The super script " 0 " means "when every reactant and product is in its standard state"
b) What is the relative partial molar heat of mixing for an Ideal solution?

Zero
c) What is the name of the ThermoCalc program module that lists values of $\Delta \mathrm{S}^{\circ}, \Delta \mathrm{H}^{\circ}$, and $\Delta \mathrm{G}^{\circ}$ for an entered reaction at user-defined temperature intervals?

TAB

3. Estimate the volume of 100 moles of NH_{3} at $445 \mathrm{~K}(1.1 *$ Tcritical $)$ and $223 \mathrm{~atm}(2 *$ Pcritical $)$? See Figure 8.4 Law of Corresponding States: $\mathrm{z}=0.4$
$V=\frac{z n R T}{P}=\frac{0.4 * 100 * 0.08205 * 445}{223}$ Liters
Actual Solution: 6.41 \mathcal{L}
4. Estimate the temperature required to raise the vapor pressure of water to 100 mmHg if it is known that the vapor pressure of water vapor above water at $22^{\circ} \mathrm{C}$ is 20 mmHg .

Clasius-Clapeyron Eq.

$$
\begin{aligned}
& \ln \left[\frac{p_{2}}{p_{1}}\right]=-\frac{\Delta H_{V a p}^{o}}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right] \\
& \ln \left[\frac{100}{20}\right]=-\frac{4320}{8.31}\left[\frac{1}{\left(273+T_{2}\right)}-\frac{1}{(273+22)}\right]
\end{aligned}
$$

$$
\mathrm{T}_{2} \text { is in }{ }^{\circ} \mathrm{C} \quad \text { Actual Solution: } 51.6^{\circ} \mathrm{C}
$$

5. Cu in a liquid $\mathrm{Ag}-\mathrm{Cu}$ solution having a composition of $\mathrm{x}_{\mathrm{Cu}}=0.1$ at a temperature of 1423 K reacts with half a mole of O_{2} at 12 atm to form pure, solid $\mathrm{Cu}_{2} \mathrm{O}$. Show how to calculate the Gibbs energy change for this process.
Data: $2 \mathrm{Cu}_{(\mathrm{l})}+0.5 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s}) \quad \Delta \mathrm{G}^{\circ}=-195,000-7.12 \mathrm{~T} \ln \mathrm{~T}+143 \mathrm{~T} / \mathrm{gmole}$

$$
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln (\mathrm{Q})
$$

$$
\mathrm{Q}=\frac{a_{\mathrm{Cu}_{2} \mathrm{O}}}{a_{\mathrm{Cu}}^{2} p_{O_{2}}^{0.5}}=\frac{1}{0.26_{\mathrm{Cu}}^{2} 12_{O_{2}}^{0.5}} \quad \text { Actual Solution: } \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}
$$

\mathbf{T}, K	$\Delta \mathbf{G}^{\circ}, \mathrm{J} / \mathrm{gfw}$	\mathbf{Q}	$\Delta \mathbf{G}, \mathrm{J} / \mathrm{gfw}$
1423	$-65,073$	4.27	$-47,906$

6. Initially there are 5 moles of $\mathrm{SO}_{2}, 3$ moles of O_{2}, and 1 mole of SO_{3} in a reactor kept at a constant pressure or 2 atm and constant temperature. Setup the calculation to determine the equilibrium number of moles of each gas. All the species are gaseous.
7. $2 \mathrm{SO}_{2}+\mathrm{O}_{2}=2 \mathrm{SO}_{3} \quad \mathrm{~K}_{\mathrm{EQ}}=1.8$
8. Let $\mathrm{x}=$ moles of O_{2} reacted
9. Mole balance to Equilibrium

\mathbf{i}	Moles		
\mathbf{i}	$\mathbf{N}_{\text {init }}$	$\mathbf{N}_{\text {Final }}$	$\mathbf{p}_{\mathbf{i}}$
SO_{2}	5	$5-2 \mathrm{x}$	$\frac{5-2 x}{9-x} 2$
O_{2}	3	$3-\mathrm{x}$	$\frac{3-x}{9-x} 2$
SO_{3}	1	$1+2 \mathrm{x}$	$\frac{1+2 x}{9-x} 2$
Total	9	$9-\mathrm{x}$	2

4. $\mathrm{K}_{\mathrm{EQ}}=\frac{\left[\frac{1+2 x}{9-x} 2\right]^{2}}{\left[\frac{5-2 x}{9-x} 2\right]^{2}\left[\frac{3-x}{9-x} 2\right]}=\frac{[1+2 x]^{2}}{[5-2 x]^{2}\left[\frac{3-x}{9-x} 2\right]}$
5. Solve for x. Note $-0.5 \leq x \leq 2.5$. Otherwise a mole value becomes negative.

Actual Solution: by Microsoft Excel Goal Seek ${ }^{\circledR}$

	x	
		Q
	0.965	1.800
\mathbf{i}	Final	$\mathbf{p}_{\mathbf{i}}$
SO_{2}	$\mathbf{3 . 0 6 9}$	$\mathbf{0 . 7 6 4}$
O_{2}	$\mathbf{2 . 0 3 5}$	$\mathbf{0 . 5 0 6}$
SO_{3}	$\mathbf{2 . 9 3 1}$	$\mathbf{0 . 7 3 0}$
Total	$\mathbf{8 . 0 3 5}$	$\mathbf{2 . 0 0 0}$

DATA:

$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}=\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}=\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$2 \mathrm{Cu}_{(\mathrm{l})}+0.5 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{C}$
$\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})=\mathrm{Cu}_{2} \mathrm{O}(\mathrm{l})$
Activity data for liquid
Ag-Cu Alloys at 1423 K
$\mathrm{X} \mathrm{X}_{\mathrm{Cu}}$
0.0
0.1

$\Delta \mathrm{H}^{\circ}=6,028 \mathrm{~J} / \mathrm{gmole}$
$\Delta \mathrm{H}^{\circ}=43,267 \mathrm{~J} / \mathrm{gmole}$
$\Delta \mathrm{G}^{\mathrm{O}}=-195,000-7.12 \mathrm{~T} \ln \mathrm{~T}+143 \mathrm{~T} \mathrm{~J} /$ gmole
$\Delta \mathrm{G}^{\circ}=13,580-9.0 \mathrm{~T} \mathrm{~J} /$ gmole

Table 8.1 The critical states, van der Waals constants, and values of Z at the critical points for several gases

Gas	$T_{c r}, K$	P_{cr}, , K m	$V_{\mathrm{cc}, \mathrm{cm}^{3} / \mathrm{mole}}$	$a, \frac{I^{2} \cdot \mathrm{~atm}}{\mathrm{~mole}^{2}}$	b, liters/mole	Z_{cr}
He	5.3	2.26	57.6	0.0341	0.0237	0.299
H_{2}	33.3	12.8	65.0	0.2461	0.0267	0.304
$\mathrm{~N}_{2}$	126.1	33.5	90.0	1.39	0.0391	0.292
CO	134.0	35.0	90.0	1.49	0.0399	0.295
O_{2}	153.4	49.7	74.4	1.36	0.0318	0.293
CO_{2}	304.2	73.0	95.7	3.59	0.0427	0.280
NH_{3}	405.6	111.5	72.4	4.17	0.0371	0.243
$\mathrm{H}_{2} \mathrm{O}$	647.2	217.7	45.0	5.46	0.0305	0.184

Figure 8.4 The variations of the compressibility factors of several gases with reduced pressure at several reduced temperatures

