South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

MET 320 Closed Note and Book No Calculators Final Exam

Dec 21, 2007

Constants:

 $R = 1.987 \text{ cal/K} \cdot \text{gmole} = 8.31 \text{ J/K} \cdot \text{gmole}$ F = 23,060 cal/volt \cdot gram equivalent = 96,259 Joule/volt \cdot gram equivalent

- 1. Show on the attached Ellingham Diagram
 - a) The pressure of O2 in equilibrium with Si and SiO2 at 1300°C
 - b) The H2/H2O ratio in equilibrium with Si and SiO2 at 1300° C
 - c) The CO/CO2 ratio in equilibrium with Si and SiO2 at 1300°C
 - d) Estimate the for one gram mole of Mg i) Heat of Fusion
 - ii) Heat of Vaporization.

2. Find the adiabatic flame temperature for the combustion of CH₄ with pure O_2 . The O_2 and the CH₄ start at 298°K. Use the data provided below only.

Species	Heats of Formation	Cp
	(calories/g mole at 298°K)	(cal/ gmole °K)
CH4(g)	see JANAF	
$H_2O(g)$	see JANAF	
$CO_{2(g)}$	see JANAF	
$O_{2(g)}$		8.6
N _{2(g)}		7.0
-		

 $CH_{4(g)}+2O_{2(g)}=CO_{2(g)}+2H_{2}O_{(g)}$

3. CaO-Al₂O₃-SiO₂ (C-A-S) Ternary Phase Diagram *Show all constructions on the diagram.*

- a) What is the bulk composition of the composition marked "1",
 - i) Percent $SiO_2 =$ _____
 - ii) Percent CaO = _____
- b) For the bulk composition marked "2", what is the 1^{st} crystal to appear upon cooling?
- c) For the bulk composition marked "3", what are the final 3 crystals?
- d) For the bulk composition marked "4", what percent liquid is present at 1400 °C

4. Pure, liquid $MgCl_2$ at 1100 K is to undergo electrolysis to form Cl_2 gas at a pressure of 0.1 ATM and pure, liquid magnesium. What cell potential is needed? Use JANAF data.

- 5. One mole of an ideal gas at 2 atm and 500 K are adiabatically compressed to 10 atm.a) What is the final temperature?
 - b) How much heat was required?

c) How much work was required?

6. What is the maximum amount of work that could be obtained from 1000 BTU's of heat from a boiler at 1000 K if the coldest heat sink available is at 400 K?

7. A railroad tanker has wrecked and caught fire. There are sealed canisters of liquid ammonia, NH_3 , near the fire in a pool of boiling water at 370 K. What is the pressure of NH_3 in the bottles? The heat of vaporization of ammonia is 21,725 J/gmole and boils at -33 °C.

8. Would a gas with a partial pressure of Cl_2 of 10^{-6} atm react with liquid Na to form liquid NaCl at 1000 K? Show your work.

$$Na_{(l)} + 0.5 Cl_{2(g)} = NaCl_{(l)}$$
 $\Delta G^{\circ} = -375,232 + 58.508T J/gmole$

 How many degrees of freedom are there in a system consisting of MgO_(s), MgCO_{3(s)}, CaO_(s), CaCO_{3(s)}, CO_{2(g)}, and N_{2(g)}? The oxide and carbonate are pure (i.e. - insoluble in one another). The gases, of course, form a gas mixture.

10. Complete the Fundamental Equations for a closed system

dU = TdS - PdV

dH =

dA =

dG =

11. Find the activity of Au in a liquid Au-Cu alloy at 1338 K that is 60 atomic percent Au from the following data:

×

9.2. Based on a diagram supplied by the British Irun & Steel Research Association

Scratch Paper - Discard

Methane (CH₄)

(Ideal Gas) Mol. Wt. = 16.043

		al. mole ⁻¹ de	······································		keal. mole	-1	
т, •к.	C;	s•	-(F*-H*298)/T	H* -H*298	▲Н;	△F ;	Log h
100	.000	.000	INCINITE	2.396	: 12.2	1 : 12-221	INCINI
200		*1.722	45.247	.805	17.2	16 - 13,909	15.11
298	8,518	44.490	44.490	.000	- 17.8	95 - 12.145	8.90
300	0.535	44.543	44.490	.016	- 17.9	- 12.110	8.82
500	9.000	40.457	44.03/	. 923	- 10.0	36 - 10.066	5.50
			-,,,,,,	1		10 - 11043	
600	12.403	51.597	46.367	3.138	- 19.9	16 - 5,493	2.00
700	13,613	53.622	47.260	4,454	- 20.4	29 - 3.046	.95
900	16.157	57.345	49.098	7.458	- 20.0	07 2.029	- 12
1000	17.160	59.141	50.016	9.125	- 21.4	4.625	- 1.01
1100	18.052	60.819	50,922	10.887	- 21.6	7.247	- 1.44
1200	18,842	62.424	51.814	12.732	- 21.8	9.887	- 1.80
1400	20.150	45.431	51.548	14.632	- 22.0	1 12.035	2.10
1500	20.688	66.840	54.387	18.679	- 22.1	17,859	- 2.60
1600	21.161	68.191	55,208	20,772	- 22.1	20.520	- 2.60
1700	21.579	69.486	56.010	22,910	- 22.1	23,189	- 2.9
1900	22.273	71.926	57.559	27.298	- 22.1	25,034	- 3.1
2000	22.562	73.076	58.306	29.540	- 22,0	9 31.187	- 3,4
2100	22,820	74.183	59.036	31.809	- 22.0	33.851	- 3.5
2200	23.050	75.250	50,749	34,103	- 22.0	26 36.511	- 3.6
2400	23.441	77.273	61.126	38,753	- 21.9	35 41.833	
2500	23.608	78.233	61.791	41.106	- 21.8	44.483	- 3.60
2600	23.758	79.162	67.441	43.474	- 21.8	47,141	- 3,9
2700	23.094	80.062	63.077	45,057	- 21.7	49,791	
2900	24.131	81.778	64.309	50.660	- 21.6	55.093	
3000	24,233	82.597	64,905	53,079	- 21.6	\$9 57,736	- 4,20
3100	24,327	83.394	65,488	55,507	- 21.60	60,381	4,2
3300	24.493	84.920	66.620	60.389	21.5	4 65.669	
3400	24,565	85.652	67.169	62.842	- 21.4	68.309	- 4.3
3900	24,033	00,303		05.302	- 21.4	/0./51	
3600	24.695	87.080	66.235	67.768	21.4	73.589	: :::
3800	24,806	88.398	69,262	72.719	. 21.3	78.872	
3900	24,855	89.043	69.761	75,202	- 21,30	61,511	- 4,5
4000	24,901	89.673	70,251	77,690	- 21.30	84,150	- 4,5
4100	24.944	90.288	70.732	80.182	- 21.30	7 86.785	- 4.6
4300	25.022	91.478	71.669	85.179	. 21.4	2 92.061	
	25.057	92.054	72.126	87,683	. 21.4	94,700	- 4.70
4500	25.090	92.617	72.575	90.190	- 21.40	97.335	- 4.73
4600	25.121	93.169	73.017	92.701	. 21.45	99,983	. 4.75
	25,150	94 740	73,452	95.214	21.54	102.025	
4900	25.203	94.759	74,300	100.249	. 21.64	4 107.912	4.01
5000	25.227	95.268	74.714	102.771	- 21.70	110,552	- 4.83
5100	25.250	95.768	75.122	105.295	- 21.71	7 113.198	- 4.05
5300	25.292	96.740	75.920	110.349	- 21.0	118.501	
5400	25.311	97.213	76.310	112,879	- 22.02	9 121.145	- 4.90
5500	25,330	47.678	10,094	115.411	- 22.13	123,799	- 4.91
5600	25.347	98.134	77.073	117.945	. 22.2	126,449	- 4.93
	25.379	99.024	77.814	123.018	- 22.4	129.106	
5800						1	
5800	25.394	99.458	78.178	125.557	- 22.55	134,428	· 4,97

∆H^{*}_{f0} = -15.99 ± 0.08 kcal. mole⁻¹

Point Group Td

(IDEAL GAS)

MOL. WT. = 16.043

 $\Delta H_{f \ 298.15}^{\bullet} = -17.895 \pm 0.08 \text{ kcal. mole}^{-1}$ S_{298.15} = 44.48 \pm 0.01 cal. deg.⁻¹ mole⁻¹

W, cm	1
2916.5	(1)
1534.0	(2)
3018.7	(3)
1306	(3)

Bond Lengths and Angles	✓ H-C-H = 109° 28'	C-H = 1.091 ± 0.002 Å
Moments of Inertia	$I_A = I_B = I_C = 5.313 \times 10^{-40}$	g. cm. ²

Heat of Formation

METHANE (CH4)

P. D. Rossini, J. Research Nat. Bur. Standards 6, 37 (1931) measured the heat of combustion of methane gas. His value at 299.15°K was corrected to the presently accepted molecular weight of water. The heat of formation was calculated using -68.3174 and -94.0540 kcal. mole⁻¹ for the heat of formation of $H_2O(1)$ and $CO_2(g)$ respectively.

Heat Capacities and Entropies

D. P. Stevenson and J. A. Ibers, J. Chem. Phys. $\underline{33}$, 762 (1960), calculated the bond distance from an analysis of available spectroscopic data. Vibrational frequencies listed by L. H. Jones and R. S. McDowell, J. Mol. Spect. $\underline{3}$, 632 (1959), are consistent with their results of a force constant calculation.

CH4

CH4

Carbon Dioxide (CO2)

(Ideal Gas) Mol. Nt. = 44.00995

		-cal. mole"	leg1	1		-k	cal. mole ⁻¹			
Т, *К.	C,	S*	-(F*-H*298)/	т	H* -H [*] ₂₅	8	▲н;		AF;	Log N
0	.000	.000	INFINITE	-	2.238	-	93.965		93.965	INFINITE
100	6.981	42.758	58.18E	-	1.543	-	93.997	-	94.100	205.64
200	7.734	47.769	51.849	-	.016	-	94.028	-	94.191	102.923
298	8.874	51.072	51.072		.000	-	94.054	-	94.265	69.09
300	8.896	51.127	51.072		.016	-	94.055	-	94.267	68.670
400	9.877	53.830	51.434		.958	-	94.070	-	94.335	51.544
500	10.606	56.122	52.148		1.987	-	94.091		94.399	41.260
600	11.310	58.126	52.981		3.087	-	94.124	-	94+458	34.405
200	11.840	59.910	53+845		9.245	-	94.169	-	94.510	29.500
900	12.667	62.002	54.705		5.453	-	94.218	-	94.556	25.830
1000	12.980	64.344	56.359		7. 984	-	94.321	-	94.628	20.680
1100	13.243	45.504	57-163		9.206		04 . 171			18 804
1200	13.466	66.756	57.896		10.032	-	94.410	-	94.681	17.242
1300	13.656	67.841	58.620		11.788	-	94.469	-	94.701	15.920
1400	13.815	68.859	59.315		13.362	-	94.515	-	94.716	14.785
1500	13.953	69.817	59.984		14.750	-	94.562	-	94.728	13.801
1600	14.074	70.722	60.627		16.152	-	94.607	-	94.739	12.940
1700	14.177	71.579	61.246		17.565	-	94.650	-	94.746	12.180
1800	14.269	72.391	61.843		18.987	-	94.606	-	94.750	11.504
1900	14.352	73.165	62+418		20.418	-	94.742	-	94.751	10.898
2000	14.424	73.901	62.974		21.857	-	94.788	-	94.752	10.353
2100	14.489	74.608	63-512		23.303	-	94.834	-	94.746	9.860
2200	14.547	75.286	64+031		24. 155	-	94.885	-	94.744	9.411
2400	14.649	75.554	66.033		27.674	-	94,936	-	94.735	9.001
2500	14.692	77.153	65-496		29.141	-	95.048	-	94.714	8.280
2600	14.734	77.730	65.054		34-613	12	05.107		04 409	7.040
2700	14.771	78.286	66-402		32.088		95.170		04.693	7.900
2800	14.807	78.824	66.836		33.567	-	95.235	-	94.662	7.388
000	14.841	79.344	67.259		35.049	-	95.305	-	94.639	7.132
3000	14.873	79.848	67.670		36.535	-	95.377	-	94.615	6.892
3100	14.902	80.336	68.071		38.024	-	95.451	-	94.587	6.668
3200	14.930	80.810	68.461		39.515	-	95.530	-	94.560	6.458
3 300	14.950	81.270	68.843		+1.010	-	95.611	-	94.531	6.260
3500	15.000	82.151	69-215		44.006	-	95.696	2	94.495	6.074
										2.0.20
3700	15.030	82.574	69-933		45.508	-	95.974	-	94.421	5.732
3800	15.075	83.388	70.620		47.012		95.958	- 21	94.379	5.574
3900	15.097	83.780	70.953		50.027	2	96.162	-	94.331	5.343
000	15.119	84.162	71.278		51.538	-	96.263	-	94.237	5.149
100	15.139	84.536	71.597		53.051	-	96.367	-	94.186	5.020
200	15.159	84.901	71.909		54.566	-	96.473	-	94.130	4.898
300	15.179	85.258	72+216		56.082	-	96.583	-	94.072	4.781
400	15.197	85.607	72.516		57.601	-	96.694	-	94.015	4.670
.500	15.210	87.949	72-811		59.122	-	96.807	-	93.954	4.563
600	15.234	86.284	73.100		60.644	-	96.923		93.885	4.460
	15.254	80.011	73.384		02.169	-	97.040	-	93.818	4.362
900	15.290	87.249	73.037		05.695	-	97.160	-	93.746	4.268
000	15.306	87.557	74.206		06.753	-	97.281	-	93.603	4.178
5100	15.127	07.864	74 471		60 304	-271				
200	15.349	88+150	74.731		69.810	2	97.530	-	93.528	4.008
300	15.371	88.451	74.988		71.355	_	97.787	-	93.450	3.927
400	15.393	88.738	75.239		72.093	-	97.912	-	93.280	3.775
500	15.415	89.021	75.488		74.433	-	98.042	-	93.190	3.703
600	15.437	89.299	75.732		75.976	-	98.173	-	93.104	3.633
700	15.459	89.572	75.972		77.521	-	98.305	-	93.017	3.566
800	15.481	89.841	76.209		79.068	-	98.438	-	92.918	3.501
900	15.503	90.106	76.442		80.617	-	98.572	-	92.820	3.438
000	15.525	90.367	76.672		82.168.	-	98.707	-	92.724	3.377
		Dec. 3	1. 1960: Ma		31, 196		Sant TO	10	92.124	

Point Group D ooh

 $S^*_{298.15} = 51.07 \pm 0.03$ cal. deg.⁻¹ mole⁻¹

ΔH^{*}_f 298.15 = -94.054 ± 0.011 kcal. mole⁻¹

ΔH^{*}_{f 0} = -93.965 ± 0.011 kcal. mole⁻¹

Vibrational Frequencies and Degeneracies

(IDEAL GAS)

	ω, cm.	
	1342.86 (1)	
	667.30 (2)	
	2349.30 (1)	
d Distance: C-O = 1.16 Å		
d Angle: 0-C-0 = 180°		σ− = 2

Rotational Constant: B = 0.39038 cm.-1

Heat of Formation.

Bon

Bon

CARBON DIOXIDE (CO.)

The enthalpy change $(\Delta H_{\Gamma}^* _{290,15})$ of the reaction C(c, graphite) + $0_2(g)$ = $CO_2(g)$ has been measured by F. H. Dewey and D. R. Harper, J. Res. Natl. Eur. Std. 21, 457 (1938), R. S. Jessup, ibid. 21, 491 (1938), and E. J. Frosen and F. D. Rossini, ibid., 33, 439 (1944). Based on these data, the heat of formation (AH 298.15) for CO2(g) was reported to be -94.0518 ± 0.0108 kcal. mole⁻¹, using molecular weight of CO₂ = 44.010, by E. J. Prosen, R. S. Jessup and P. D. Rossini, J. Research Natl. Bur. Standards 33, 447 (1944). This value was recalculated to be -94.054 ± 0.011 kcal. mole⁻¹, based on molecular weight of $CO_2 = 44.011$, for internal consistency.

Heat Capacity and Entropy.

The functions adopted here were obtained from H. W. Woolley, J. Research Nat. Bur. Standards 52, 289 (1954) who calculated the thermodynamic functions by means of a direct summation for the naturally occurring isotopic composition. The spectroscopic constants used are essentially those selected by T. Wentnik, Jr., J. Chem. Phys. 30, 105 (1959). Slightly different sets of spectroscopic constants were obtained by C. P. Courtoy, Mem. soc. roy. Liege 16, 496 (1957) and V. R. Stull, P. J. Wyatt and G. N. Flass, J. Chem. Phys. <u>37</u>, 1442 (1962). The high-resolution infrared spectrum of 0^{10} - enriched CO₂ was examined in the region 5400-1620 cm.⁻¹, using an Ebert grating Spectrometer with spectral slit widths ranging from 0.4 to 0.2 cm. 1 by C. V. Berney, Ph. D. Thesis, University of Washington, 1962.

The molecular structure was reported by G. Herzberg, "Infrared and Raman Spectra", D. Van Nostrand Company, Inc. 1945. The rotational constant, B_0 , was obtained from H. W. Woolley, loc. cit. The value of bond distance, r_0 , was calculated from B_0 which was derived from B_0 , using $B_0-B_0 = 0.0011$ cm.⁻¹ given in G. Herzberg, loc. cit. The principal moment of inertia is I = 7.1495 X 10⁻³⁹ g. cm.²

Heat capacities of CO2(g) at high pressures were reported by M. P. Vukalovich, V. V. Altunin and A. N. Gureev, Teploenergetiks, 12 (7), 58 (1965); K. Krueger, Ver. Deut. Ingr. 2., 106 (32) 1620 (1964), and M. P. Vukalovich and A. N. Gureev, Teploenergetiks, 11 (8), 80 (1964).

002

c02

MOL. WT. = 44.00995

Magnesium Uichloride (MgCl₂)

(Licuid) Mol. Wt. = 95.218

		-cal. mole-1	deg1		-kcal. mole ⁻¹		
т, *К.	ʻ C;	S*	-(F*-H*298)/T	H*-H [*] 298	△ H [*]	△F [*]	Log K
100							
100							
298	17.060	10.949	30.949	+000	- 143.779	- 134.789	98.798
				a Same			
300	17.088	31.055	30.949	.032	- 143.773	- 134.733	98.148
400	18.095	36.123	31.633	1.796	- 143.453	- 131.768	71.991
500	18.677	40.228	32.955	3.636	- 143.108	- 128.884	56.332
+ 0.0	10.000	13 636	24.450	5,505	- 142.777	= 126.072	45.919
200	22.000	46.807	35.005	7.569	- 162.284	- 123.321	38.501
200	22.000	40.746	37.634	9.769	- 141-695	- 120.654	32.959
000	22.000	62.336	20.038	11.969	- 141.146	- 118.056	28.667
1000	22.000	54.054	40.485	14.189	- 142.759	- 115.337	25.206
1100	22.000	56.751	41.870	16.369	- 142.258	- 112.621	22.375
200	22.000	58.065	43.191	18.569	- 141.785	- 109.948	20.023
1300	22.000	60.426	44-450	20.769	- 141.340	- 107.313	18.040
400	22.000	62.056	45.650	22.969	- 171.288	- 104.231	16.270
1500	22.000	63.574	46.795	25.169	- 170.491	- 99.469	14.492
1400	22 000	44.004	47.000	27.369	- 169.696	- 94.762	12.943
1000	22.000	66.320	44.035	29.569	- 168.902	- 00.101	11.583
100	22.000		40.036	31.769	- 168,110	- 85.489	10.379
1900	22.000	68.775	50.897	33.969	- 167.318	- 80.920	9.307
2000	22.000	69.903	51.819	36.169	- 166.530	- 76.392	8.347
				10			7 4 9 3
5100	55.000	70.977	52.706	18.369	- 165.742	- 71.908	1.483
\$500	55.000	72.000	53.500	40.569	- 104.957	- 67.490	6.701
2300	55.000	72.978	54.383	"2. 169	- 104+173	- 63.040	5.990
2400	22.000	73.914	55.177	44.369	- 103.391	- 58.000	5.541
2500	22.000	74.812	55+945	47.169	- 102.013	- 54.515	4./40
2600	22.000	75.675	56+687	49.369	- 161.836	- 49.995	4.202
2700	22.0UC	76.506	57.406	51.569	- 161.063	- 45.711	3.700
2800	22.000	77.306	58.103	53.769	- 160.293	- 41+453	3.235
2900	22.000	78.078	58.778	55.969	- 159.526	- 37.222	2.805
3000	22.000	78.824	59.434	58.169	- 158.764	- 33.019	2.405

MAGNESIUM DICHLORIDE	(MgCl ₂)	(LIQUID)		MOL. WT. = 95.218
S [°] 298.15 =	30.949 cal. deg. ⁻¹ mole ⁻¹	ан° _r	298.15 -143.779	kcal. mole ⁻¹
T _m = 987°K		۵H ^e m	= 10.30 ± 0.05 kcal.	mole ⁻¹
T _b = [1710]*K.	∆H*v	= [37.34] kcal. mole	,-1

Heat of Formation.

 $\Delta H^*_{f~298,15}(1) \text{ was calculated from } \Delta H^*_{f~298,15}(c) \text{ by adding } \Delta H^*_{m} \text{ and the difference between } H^*_{T_m} - H^*_{298} \text{ for crystal and liquid.}$

Heat Capacity and Entropy.

A constant $C_p(1) = 22.0$ cal. deg.⁻¹ mole⁻¹ over the temperature range 1006-1428^aK. is from the high temperature heat content data of 0. E. Moore, J. Am. Chem. Soc. <u>65</u>, 1700 (1943). This constant value was assumed to hold from an assumed glass transition of 660°K. to 3000°K. $C_p(1)$ below 660°K. is taken to be that of the crystal. The entropy was obtained in a manner analogous to the heat of formation.

Melting Data.

See MgCl₂(c) table for details.

Vaporization Data.

 $T_b \text{ is calculated as the temperature at which the free energy change of the reaction <math>\operatorname{MgCl}_2(1) = \operatorname{MgCl}_2(g)$ approaches zero. The difference between AH_f^* for $\operatorname{MgCl}_2(1)$ and $\operatorname{MgCl}_2(g)$ at T_b is AH_ϕ^* .

Dec. 31, 1960; Dec. 31, 1965

CI2Mg

13

anium Tetrachloride (TiCl,)

	-20	albhe (ma			bentle et		
, °К	Cp°	S° S	-(G°-H°298)/T	H°-H°296	ΔHf°	۵Gf	Log Kp
	.000	.000	INFINITE	- 5.160	- 182.026	- 182.020	INFINITE
200	20.582	76.098	86.822	- 2.145	- 182.441	- 176.584	192.962
298	22.852	84.793	84.793	.000	- 182.400	- 173,721	127.341
300	22.881	84.935	84.794	.042	- 182.399	- 173.667	126.516
500	24,610	97.118	87,464	4.827	- 182.326	167.886	73.363
600	24.962	101.439	89.461	7.307	- 182.168	- 165.022	60.109
700	25.183	105.504	91.483	9.815	- 182.102	- 162.171	50.632
800	25,330	108.877	93.451	12.341	- 182.058	- 159.328	43.520
1000	25.507	114.551	97.124	17.427	- 182.040	- 153.650	33.580
1100	25.563	116.985	98.821	19,980	- 182.070	- 150.808	29.963
1500	25.605	119.211	100.428	22.539	- 183.063	- 147.927	26.941
1300	25.639	121.262	101.953	25.101	- 183.019	- 141.001	24.377
1500	25,606	124.934	104.778	30.234	- 182.980	- 139.150	20.275
1600	25,704	126.592	106.090	32.803	- 182.990	- 136.233	18.609
1700	25.719	128.151	107.343	35.375	- 183.019	- 133,308	17.138
1900	25.731	129.622	108.540	37.947	- 183.074	- 130.305	15.831
2000	25.750	132.334	110.706	43.095	- 187.705	- 124.300	13.590
2100	25.750	133.590	111.642	45.671	- 187.809	- 121.198	12.613
5500	25.765	134.789	112.050	48.247	- 187.919	- 110.024	11.725
2400	25./76	137.031	114.781	53,401	- 180.145	- 111.65/	10.160
2500	25,780	138.083	115.642	55.979	- 188.265	- 100,460	9.402
2600	25.764	139.094	116.573	58.557	- 168.387	- 105.274	8.849
2700	25.700	140.068	117.425	01.135	- 188.515	- 102.076	8.202
2900	25.794	141.911	119.051	66.294	- 168.784	- 95.601	7.20%
3000	25.796	142.785	119.027	68.873	- 188.927	- 92.450	6.735
3100	25.799	143.631	120,582	71.453	- 189.075	- 69.230	0.291
3200	25,801	144,450	121.315	74.033	- 189.229	- 60.010	5.682
3400	25.804	146.014	122.722	79.193	- 189.553	- 79.543	5.113
3500	25,806	146.762	123.398	81.774	- 189.724	- 76.311	4.765
3600	25.807	147.485	124.050	64.355	- 291.525	- 72.802	4.420
3800	25.810	140.197	124.700	86 516	- 291.079	- 00.724	3.941
3900	25.811	149.555	125.940	92.097	- 292.038	- 54.556	3.057
4000	25,812	150.209	120.539	94.079	- 292.245	- 40,404	2.648
4100	25.813	150.440	127.124	97.200	- 292.466	- 42.364	2.258
4200	25.614	151.400	120.254	102 423	- 292.963	- 30.210	1.533
4400	25.816	152.009	128.804	105.004	- 293.233	- 24,041	1.194
4500	25.817	153.244	129.341	107.580	- 293.517	- 17.925	.871
4600	25.817	153.817	124.867	110.168	- 293.811	- 11.793	.560
4700	25.818	154.3/2	130.303	112.749	- 294.120	- 5.65/	022
4900	25.619	155.448	131.384	117.913	- 294.771	6.629	296
5000	25.820	155.469	131.870	120.495	- 295.110	12.703	559
5100	25.620	156.461	132.340	123.07/	- 295.457	18.949	812
5200	25.621	156.982	132.01/	125.059	- 295.014	25.119	- 1.056
5400	25.822	157.457	133.730	130.823	- 296.553	37.472	- 1.517
5500	25.822	158.431	134.175	133.400	- 296.930	43.666	- 1.735
5600	25.823	15896	134.612	135.988	- 297.315	49.853	- 1.946
5700	25.823	159.353	135.042	138.570	- 297.706	56.054	- 2.149
5900	25.824	160.243	135.882	143.735	- 298.501	68,483	- 2.537
6000	25.824	160.677	136.291	146.317	- 298.906	74.706	- 2./21
		Sept. 3	0, 1961; Ma	r. 31, 1960	. Dec. 31.	1967	

TITANIUM TETRACHLORIDE (TiCl_)

(IDEAL GAS)

∆Hf = -182.0 ± 0.9 kcal/mol

AHf 298.15 = -182.4 ± 0.9 kcal/mol

S^{*}₂₉₈ = 84.8 ± 0.7 gibbs/mol

Point Group Td

Ground State Quantum Weight = 1

Vibratic	nal Frequencies and Degeneracies
ω, cm ⁻¹	ω, cm ⁻¹
388 (1)	498.5 (3)
111 (2)	131 (3)
•	
Bond Distance: Ti-Cl = 2.185 A	
Bond Angle: Cl-Ti-Cl = 109° 28'	σ = 12
Product of the Moments of Inertia:	$I_A I_B I_C = 4.2092 \times 10^{-112} g^3 cm^6$

Heat of Formation

The heat of formation, ΔHf^*_{258} , of TiCl₄(g) and TiCl₄(4) has been measured by several investigators. The results of these measurements are as follows. AHf:... kcal/mol

			298	
Investigators	Method	Reaction	TiCl ₄ (1)	TiCl ₄ (g)
Johnson et al. (1959) (1)	Calorimetric	$Ti(c)+2Cl_2(g) = TiCl_u(g)$	(-192.2)	-182.4±0.7
Farber and Darnell (1955) (2)	Equilibrium	$TiO_{2}(c)+4HCl(g) = TiCl_{1}(g)+2H_{2}O(g)$	(-192.7)	-182.9±0.5
Skinner and Ruehrwein (1955) (3)	Calorimetric	Ti(c) +xCl ₂ (g) = [TiCl ₁ +(x-2)Cl ₂] soln	-190.3±3.0	(-180.5)
Gross et al.(1957) (4)	Calorimetric	$Ti(c) + xCl_2(t) = [TiCl_+ + (x-2)Cl_2] $ soln	-191.5±0.3	(-181.7)
Krieve et al. (1956) (5)	Calorimetric	$Ti(c)+xCl_{g}(g) = [TiCl_{g}+(x-2)Cl_{g}]$ soln	-190.0±0.4	(-180.2)
Thomsen (1882) (6)		Ticl4(\$)+2H20(\$) = 4HC1(0.002 m)+TiO2(c)	-194.5	(-184.7)

The chosen value of AHf^{*}₂₉₈ is that reported by Johnson et al. (1). This investigation has the advantage of being independent of the heat of vaporization of chlorine and any heats of solution in deriving the value of the heat of formation.

Heat Capacity and Entropy

The adopted value for the interatomic distance is that reported by Kimura et al. (7). The tetrahedral structure was established by the Raman work of Bhagavantam (8). The vibrational frequencies determined from the infrared and Raman spectra of TiCl' by Hawkins and Carpenter (9) are adjusted downward 8 cm⁻¹ for v_2 and v_4 so that the heats of vaporization determined by both second and third law methods are in agreement. See $\text{TiCl}_{4}(\ell)$ table for details. The principal moments of inertia are: $I_A = I_B = I_C = 74.943 \times 10^{-39} \text{ g cm}^2$.

References

- 1. W. H. Johnson, R. A. Nelson, and E. J. Prosen, J. Res. Natl. Bur. Std. 62A, 49 (1959).
- 2. M. Farber and M. Darnell, J. Chem. Phys. 23, 1460 (1955).
- 3. G. B. Skinner and R. A. Ruehrwein, J. Phys. Chem. 59, 113 (1955).
- 4. P. Gross, C. Hayman, and D. L. Levi, Trans. Faraday Soc. 53, 1601 (1957).
- 5. W. F. Krieve, S. P. Vango, and D. M. Mason, J. Chem. Phys. 25, 519 (1956).
- 6. J. Thomsen, Thermochemische Untersuchungen, I. (Verlag, J. A. Barth, Leipzig, 1882).
- 7. M. Kimura, K. Kimura, M. Aoki, and S. Shibata, Bull. Chem. Soc. Japan 29, 95 (1956).
- 8. S. Bhagavantam, Indian J. Phys. 7, 79 (1932).
- 9. N. J. Hawkins and D. R. Carpenter, J. Chem. Phys. 23, 1700 (1955).

CIATI

GFW = 189.712

Water (H₂0)

(Ideal Gas) Mol. Wt. = 18.016

	1									
т, •к.	C;	5.	-(F*-H*298)/	H -H 19		AH?		AF;		Log K
0	.000	.000	INFINITE	- 2.367	-	57.103	-	57.103	IN	FINITE
100	7.961	36.396	52.202	- 1.581	-	57.433	-	56.557	1	23.600
200		41.916	45.03/	.784		-27-279		22.032		10.792
298	0,025	45.100	45,106	.000		21.140	20	34.030		40.040
300	0.027	45.155	45.106	.015	•	57.803	-	54.017		39,786
400	0.186	47.484	45.422	.825		58.042	-	53.519		29,240
500	0.415	49.334	44.026	1.654	•	54.277	-	52,361		22.886
			44 710	0.600		64.600	-	61.164		
700	0.954	52.249	47.406	3.390	-	58.710	-	49.915		15.583
800	4.246	53.464	44.089	4.300	-	58.905	-	48.646		13.289
900	9.547	54.570	48.749	5.240	-	59.084	•	47.352		11.498
000	¥.851	55,592	49.382	6.209	-	59,246	-	46,040		10.062
100	19.152	56.545	49.991	7.210		59.391	-	44.712		8,883
200	10.444	57.441	50.575	8.240	-	59.519	-	43,371		7.899
300	10.723	58.200	51.136	9.298	-	59.634	-	42.022		7.064
400	10.987	59.092	51.675	10.384	:	59.824	-	39.297		5.725
	11.235	37.037	36.11.0	11.4.5						
600	11.462	60.591	52.698	12.630	-	59.906	-	37.927		5.180
700	11.674	61.293	53,153	13.767	:	60.04	2	35,170		4.270
000	11.849	61.905	54 107	14.964	-	60.099	-	33.786		3.886
0000	12.214	63.234	54.548	17.373	•	60.150	-	32.401		3.540
		12000220						14 040		
2100	12.346	A3.834	55 392	18.602	-	60.242	-	29.621		2.942
200	12.505	64 971	55 796	21,103	-	60.282	-	28,229		2.682
2400	12.753	65,511	56,190	22.372	-	60.321	-	26.832		2.443
2500	14.843	66.034	54.573	23.653		60.359	-	25.439		2.224
			54 047	24 945		60. 191		24.040		2.021
2700	13.059	47.032	57.311	26.246	-	60.428	-	22.641		1.833
2800	13.140	67.508	57.667	27.556	-	60.462	-	21.242		1.658
0095	13.225	67.971	54.014	28,875	•	60.496	-	19.838		1.495
3000	13.304	48.421	54.354	30.201	-	60.530	-	10.430		1.343
100	13.374	68.850	54.685	31,535		60,562	-	17.034		1.201
3200	13.441	49.284	59,010	* 32.876	•	60.596	-	15.630		1.067
3300	13.503	49.048	59.328	34.223	-	60.631	-	14.223		.942
3400	13.542	70.102	59.991	35.934	-	40.703	-	11.409		.712
,,,,,,	13.4.1	1014-0								
3600	13.444	70.861	60.242	38.300	•	60.741	-	10.000		.607
3700	13./10	/1.256	60.534	39.009		40 822	- 2	7 177		413
1900	13.764	71.980	61,103	42.422	-	60.865	-	5.766		.323
4000	13.850	72.331	41.379	43,805		60.910	-	4.353		,238
	1000000									
4100	13.490	72.673	61.051	45.192	-	60.957	- 2	2.730		.15/
4200	14.963	71.330	62.179	47.977	-	61.056	-	.105		.005
4400	13.997	73.658	62.436	49.375	-	61.109		1.311	-	.065
4500	14.030	73.973	42.689	50.777	-	61,164		2.729	-	.133
8600	10 061	74.251	62.936	52.141		61.220		4.154		. 197
4700	14.091	74.564	63,162	53,589	-	61.279		5.576	-	.259
4 600	14.120	74.881	63.423	55,000	-	61.339		6.998	-	.319
4900	14.14*	75.172	63,660	56.413	-	61.401		8.422	-	. 376
5000	14.1/4	15.459	03.043	51.054	-	01,405		9.044		30
5100	14,201	75,740	64,122	59.248	-	61.532		11.275	-	.483
5200	14.228	16.010	64.348	60.669	•	61.600		12.700	-	.534
5300	14.254	76.287	64.571	62.093	:	61.669		14.135	:	.583
5400	14.279	76.553	64.791	63-520		61.613		16.995	-	.030
3300	14.303	10.010	03.007	04.747	0	211-113		10		
5600	14.328	77.074	65.220	06.381		61.889		18.426	•	.715
5700	14.351	77.321	65.430	67.515		01.905		19,062	-	
5900	14.375	11 022	65.843	70.690	-	62,122		22.736		.841
6000	14.622	78.045	66.044	72.131		62.203		24.174		.880
	141446					A				

ΔH^{*}_{f0} = -57.103 kcal. mole⁻¹

Point Group C2v

WATER (H20)

aantii 1995

(IDEAL GAS)

△H^{*}f 298.15 = -57.7979 kcal. mole⁻¹

S^{*}298.15 = 45.106 cal. deg.⁻¹ mole⁻¹

Vibrational Levels and Multiplicities <u>(U), cm.⁻¹</u> 3657.05 (1)

1594.59 (1) 3755.79 (1)

Bond Length and Angle 0-H distance = 0.9584 Å H-0-H angle = 104.45° σ= 2

Product of Momenta of Inertia $I_A I_B I_C = 5.7658 \times 10^{-120} \text{ g.}^3 \text{ cm.}^6$

Heat of Formation

Taken from National Bureau of Standards Circular 500, "Selected Values of Chemical Thermodynamic Properties," 1952.

Heat Capacity and Entropy

A. S. Priedman and L. Haar, J. Chem. Phys. <u>22</u>, 2051 (1954), using the infra-red spectra analysis of W. S. Benedict, N. H. Classeen and J. H. Snaw, J. Research Natl. Bur. Stendard <u>34</u>, <u>31</u> (1952), have calculated the thermodynamic functions for water including the anharmonic corrections. Priedman and Haar in comparing their calculation to that of a direct summation by Olatt, Adams, and Johnston, Ohio State University Res. Foundation Tech. Report No. 316-6 (1953), found that the difference between the two calculations was less than the uncertainty in the direct summation.

 C_p values from 100° to 5000°K. are from Friedman and Haar. C_p from 5000° to 6000°K was extrapolated linearly. Using the tabulated functions of Friedman and Haar C_p , S, and H_q -H₀ at T = 298.15°K. was calculated by the method of Lagrangian curvilinear interpolation, W. J. Taylor, J. Research Natl. Bur. Standards <u>35</u>, 151 (1945).

The bond length and angle were obtained from a compilation by L. E. Sutton, "Tables of Interatomic Distances and Configurations in Molecules and Ions," The Chem. Soc., Burlington House, London W1, 1958.

MOL. WT. - 18.016

H20

Magnesium (Mg)

(Reference State) At. Wt. = 24.32

	<u></u>	can more .	v.B.)			`	
т, •к.	C;	s.	-(F*-H*298)/T	H*-H*298	▲Н;	AF;	Log K
٥	.000	.000	INFINITE -	1.196	.000	.000	.000
100	3.768	2.273	12.695 -	1.042	.000	.000	.000
200	5.440	5.533	7.013 -	.480	.000	.000	.000
298	5.973	7.814	7.814	.000	.000	.000	.000
300	5.960	7.851	7.814	.011	.000	. 900	.000
400	6.290	9.613	8.052	.625	.000	.000	.000
500	6.560	11.047	8.512	1.267	.000	.000	.000
500	6.802	12.264	9.036	1.936	.000	.000	.000
700	7.080	13.333	9.577	2.629	.000	.000	.000
800	7.420	14.300	10.108	3.354	.000	.000	.000
900	7.810	15.196	10.624	4.115	.000	.000	.000
000	7.880	18.339	11.304	7.034	.000	.000	.000
100	8.140	19.102	11.979	7.836	.000	.000	.000
200	8.400	19.821	12.602	5.363	.000	.000	.000
300	8.000	20.504	13.184	9.516	.000	.000	.005
400	4.968	43.187	16.025	41.257	.000	:000	.000
			17.764	41.764	.005	.000	-000
700	4.969	43.050	19,208	42.251	-000	.000	.000
800	4.968	64.434	20.697	42.718	-040	.000	.000
900	900.4	44704	20.087	43.744	.000	.000	.000
000	4.969	44.959	23.098	43.741	.000	.000	.000
100	0.969	46.201	24-136	44.238	.000	.000	.000
200	4.970	45.433	25.098	44.735	.000	.000	.300
300	4.972	45.654	25.987	45.232	.000	.000	.000
400	4.974	45.865	25.811	45.729	.000	.000	.000
500	4.978	46.065	27.578	46.227	.000	.000	.000
600	4.983	46.264	28.202	46.725	.000	.000	.000
700	4.989	46.452	28.952	47.224	.000	.000	.000
800	4.998	46.633	29.589	47.723	.000	.000	.000
000	5.009	46.809	30.180	48.223	.000	.000	.000
0000	5.023	46.979	30.737	48.725	.000	.000	.000
100	5.040	47.144	31.264	49.228	.000	.000	.000
200	5.060	47.304	31.763	49.733	.000	.000	.000
3300	5.085	47.400	32.275	50.240	.000	.000	.000
1500	5.114	47.013	32.686	50.750	.000	.000	.000
3600	5.186	47.907	33.524	51.720	.000	.000	.000
3700	5.229	48.050	33.914	52.301	.000	.000	.000
008	5.278	48.190	34.288	52.920	.000	.000	-000
000	5.392	48.463	34.990	53.892	.000	.000	.000
100	6.467	40.507	35.310	54.415	-000	- 000	- 200
200	5.528	48.720	35.639	54.084	-000	.000	-000
1300	5.604	48.860	35.044	55.541	-200	. 000	.000
400	5.686	48.993	36.239	56.105	.000	.000	.000
-500	5.773	49.119	36.524	56.678	.000	.000	.000
600	5.866	49.247	36.729	57.260	.000	.000	.000
700	5.964	49.374	37.055	57.851	.000	.000	.001
800	6.067	49.501	37.323	58.453	.000	.000	.000
000	6.176	49.627	37.573	59.065	.000	.000	.000
5000	6.289	49.753	37.315	59.688	.000	.000	.630
5100	6.407	49.875	38.050	60.323	.000	.000	.000
5200	6.530	50.004	38.279	00.373	.000	.000	.000
5300	6.658	50.130	38.901	01.629	.000	.000	.000
5500	6.927	50.255	38.718	62.987	.000	.000	.000
5000	7.069	50.507	39.115	03.687	.000	.000	.000
5800	7.367	50.740	30.521	55.130	.000	.000	1000
5000	7.523	50.800	30.333	65.975	.000	.000	.000
6000	7.684	51-015	10.010	66-635	.000	- 000	-000

(REFERENCE	STATE)

Ideal gas, monatomic

Crystal Liquid

See crystal, liquid, and ideal monatomic gas for details.

Below 922°K

922°K to 1378°K above 1378°K

MAGNESIUM (Mg)

AT. WT. = 24.32

Mg

Mg

16