South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

CLOSED BOOK and NOTES

- NO CALCULATORS
- Algebraic Answers Preferred
- Leave R in the equation but write out its value to achieve proper units.

UNITS (Algebraic answers should be left in a form to obtain these units

- $\mathrm{q}, \mathrm{w}, \mathrm{U}$, and $\mathrm{H}[=$] Joules
- $\quad \mathrm{S}[=] \mathrm{J} / \mathrm{K}$
- $\mathrm{V}[=]$ Liters
- $\mathrm{T}[=] \mathrm{K}$
- $\mathrm{P}[=] \mathrm{atm}$

SHOW ALL WORK ON THE SHEETS PROVIDED.

PLACE THE ANSWERS IN THE INDICATED BOX.

- Turn in only the problem sheets with the problems on them.
- Keep or discard all other paper

1. What is the configurational entropy change for 3 g -moles of Ar mixing with 7 g -moles of Ne ?
$\Delta S^{\text {Mixing }}=S^{M, \text { ideal }} \quad$ (SymbolUsed in Later Chapers)
$\Delta S^{M i x i n g}=-R\left[x_{N e} \ln x_{N e}+x_{A r} \ln x_{A r}\right] n_{\text {Total }}$
$S^{M, \text { ideal }}=-8.31 \frac{J}{K * \text { gmole }}\left[\frac{7}{7+3} \ln \frac{7}{7+3}+\frac{3}{7+3} \ln \frac{3}{7+3}\right] 10$ gmole
$S^{M, \text { ideal }}=-8.31 * 10[0.7 \ln 0.7+0.3 \ln 0.3] \frac{\mathrm{J}}{\mathrm{K}}$
$S^{M, \text { ideal }}=50.76 \frac{\mathrm{~J}}{\mathrm{~K}}$
2. One mole of ideal monotomic gas at 300 K is isothermally compressed from 1 atm to 10 atm . Find $\Delta \mathrm{U}, \Delta \mathrm{H}, \Delta \mathrm{S}, \mathrm{q}, \mathrm{w}$, and the final V .

$$
\begin{aligned}
& T_{2}=T_{1}=300 \mathrm{~K} \\
& P_{2} V_{2}=P_{1} V_{1} \\
& \Delta U=n * C V^{*} \Delta T=0 \\
& \Delta H=n * C p^{*} \Delta T=0 \\
& w_{\mathrm{Max}}=q_{\mathrm{Rev}}=\int_{1}^{2} P d V=n R T \int_{1}^{2} \frac{d V}{V}=n R T \int_{1}^{2} d \ln V=n R T \ln \frac{V_{2}}{V_{1}}=n R T \ln \frac{P_{1}}{P_{2}}=300 R \ln \frac{1}{10}=-300 R \ln 10 \\
& \left.\left.\Delta S=\int d S=\int \frac{d q}{T}\right)_{\mathrm{Rev}}=\frac{1}{T} \int d q\right)_{\mathrm{Rev}}=\frac{q_{\mathrm{Rev}}}{T}=n R \ln \frac{P_{1}}{P_{2}}=-n R \ln 10=-1 \mathrm{gmole} * 8.31 \frac{\mathrm{~J}}{\mathrm{~K} * \mathrm{gmole}} \ln 10 \\
& \Delta S=-19.13 \frac{J}{K} \\
& V_{2}=\frac{n R T_{2}}{P_{2}}=\frac{R * 300 \mathrm{~K}}{10 a t m}=\frac{1 \text { gmole } * 0.08205 \frac{L^{* a t m}}{\mathrm{~K}^{2} \mathrm{gmole}} * 300 \mathrm{~K}}{10 \mathrm{~atm}}=2.46 \mathrm{~L}
\end{aligned}
$$

3. Ten moles of ideal gas at 300 K and 1 atm are adiabatically compressed to 10 atm .

Find $\Delta \mathrm{U}, \Delta \mathrm{H}, \Delta \mathrm{S}, \mathrm{q}, \mathrm{w}$, and the final T .

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{R / C p=R /(2.5 R)=0.4} \\
& T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{0.4}=300 \mathrm{~K}\left(\frac{10}{1}\right)^{0.4}=754 \mathrm{~K} \\
& \Delta T=(754-300) \mathrm{K}=454 \mathrm{~K} \\
& \Delta U=n^{* C v} * \Delta T=10 \mathrm{gmole} * 1.5 R * 454 \mathrm{~K}=10 \mathrm{gmole} * 1.5 * 8.31 \frac{\mathrm{~J}}{\mathrm{gmole} * \mathrm{~K}} * 454 \mathrm{~K}=56,540 \mathrm{~J} \\
& \Delta H=n^{*} C p^{*} \Delta T=10 \mathrm{gmole} * 2.5 R^{*} 454 \mathrm{~K}=10 \mathrm{gmole} * 2.5 * 8.31 \frac{\mathrm{~J}}{\mathrm{gmole} * \mathrm{~K}} * 454 \mathrm{~K}=94,230 \mathrm{~J} \\
& q_{\mathrm{Rev}}=0 \\
& \left.\Delta S=\int d S=\int \frac{d q}{T}\right)_{\text {Rev }}=0 \\
& --------------------------------------- \\
& V_{2}=\frac{n R T_{2}}{P_{2}}=\frac{R^{*} 754 \mathrm{~K}}{10 \mathrm{~atm}}=\frac{1 \mathrm{gmole} * 0.08205 \frac{L^{2} * \mathrm{~atm}}{\mathrm{~K} * \text { gmole }} * 754 \mathrm{~K}}{10 \mathrm{~atm}}=6.19 \mathrm{~L}
\end{aligned}
$$

4. An ideal diatomic gas at 500 K and 1 atm is isobarically compressed from 10 liters to 1 liter. Find $\Delta \mathrm{U}, \Delta \mathrm{H}, \Delta \mathrm{S}, \mathrm{q}, \mathrm{w}, \mathrm{n}$, and the final T .

$$
\begin{aligned}
& C p=3.5 R \quad C v=2.5 R \\
& P_{2}=P_{1}=1 \mathrm{~atm} \\
& P=n R \frac{T_{i}}{V_{i}} \quad V_{i}=n R \frac{T_{i}}{P} \\
& \frac{T_{2}}{V_{2}}=\frac{T_{1}}{V_{1}} \\
& n=\frac{P_{1} V_{1}}{R T_{1}}=\frac{1 \mathrm{~atm} * 10 \mathrm{~L}}{0.08205 \frac{L^{* a t m}}{K^{*} \text { gmole }} * 500 \mathrm{~K}}=0.24 \text { gmole } \\
& T_{2}=T_{1} \frac{V_{2}}{V_{1}}=500 \mathrm{~K} * \frac{1 \mathrm{~L}}{10 \mathrm{~L}}=50 \mathrm{~K} \\
& \Delta T=-450 K \\
& \Delta U=n^{*} C v^{*} \Delta T=0.24 \text { gmole } * 2.5 R^{*}(-450 \mathrm{~K}) \\
& =-0.24 \mathrm{gmole} * 2.5 * 8.31 \frac{\mathrm{~J}}{\text { gmole } * K} * 450 \mathrm{~K}=-2,244 \mathrm{~J} \\
& \Delta H=n^{*} C p^{*} \Delta T=0.24 \text { gmole } * 3.5 R^{*}(-450 K) \\
& =-0.24 \text { gmole } * 3.5 * 8.31 \frac{\mathrm{~J}}{\text { gmole } * K} * 450 \mathrm{~K}=-3,141 \mathrm{~J} \\
& q_{P}=\Delta H=3,141 J \\
& \left.\Delta S=\int d S=\int \frac{d q}{T}\right)_{\operatorname{Rev}}=\int_{1}^{2} \frac{n C p d T}{T}=n 3.5 R \int_{1}^{2} d \ln T \\
& =0.24 \text { gmole }^{*} 3.5 * 8.31 \frac{\mathrm{~J}}{\text { gmole }^{*} \mathrm{~K}} * \ln \frac{T_{2}}{T_{1}}=6.98 \frac{\mathrm{~J}}{\mathrm{~K}} * \ln \frac{50}{500}=-6.98 \ln 10 \frac{\mathrm{~J}}{\mathrm{~K}}=-16.07 \frac{\mathrm{~J}}{\mathrm{~K}} \\
& w_{\text {Max }}=\int_{1}^{2} P d V=P \int_{1}^{2} d V=P\left(V_{2}-V_{1}\right)=n R P\left(\frac{T_{2}}{P}-\frac{T_{1}}{P}\right)=n R\left(T_{2}-T_{1}\right) \\
& =0.24 \mathrm{gmole} * 8.31 \frac{\mathrm{~J}}{\mathrm{~K}^{*} \text { gmole }}(-450 \mathrm{~K})=-897 \mathrm{~J}
\end{aligned}
$$

5a. A heat engine is operating between heat sinks at 1000 K and 400 K . What is the maximum theoretical work that can be produced from 1000 Joules of heat from the high temperature sink?

5b. A heat pump is operating between heat sinks at 27 degrees Celsius and 7 degrees Celsius. What is the theoretical work needed to deliver 1000 Joules of heat to the high temperature sink?

