South Dakota School of Mines and Technology
Department of Materials and Metallurgical Engineering
Met 320
HQ 2
Nov 1, 2007
CLOSED BOOK and NOTES - NO CALCULATORS - SHOW ALL WORK ON THE PROBLEM SHEETS DISCARD ALL OTHER WORK SHEETS. If there seems to be an error in the problem statement, suggest a correction and proceed with your assumed correction. Each problem is worth 20 points.

1 a) Write the Fundamental equations for a closed system for dH

$$
\begin{aligned}
& \mathrm{dU}=\mathrm{TdS}-\mathrm{PdV} \\
& \mathrm{H} \equiv \mathrm{U}+\mathrm{PV} \\
& \mathrm{dH}=\mathrm{dU}+\mathrm{PdV}+\mathrm{VdP}=\mathrm{TdS}-\mathrm{PdV}+\mathrm{PdV}+\mathrm{VdP} \\
& \mathrm{dH}=\mathrm{TdS}+\mathrm{VdP}
\end{aligned}
$$

b) The Definition of Chemical potential $\left.\mu_{\mathrm{i}} \equiv \frac{\partial G}{\partial n_{i}}\right)_{T, P, n_{\text {oher }}}$
c) The Criterion of Equilibrium at $\mathrm{dT}=\mathrm{dP}=0$

$$
\mathrm{dG} \leq 0
$$

d) What is the Maxwell Relation from $\mathrm{dU}=\mathrm{TdS}-\mathrm{PdV}$?

$$
\left.\left.\frac{\partial T}{\partial V}\right)_{S}=-\frac{\partial P}{\partial S}\right)_{V}
$$

e) What are the two Other Thermodynamic Relationship arising from $\mathrm{dU}=\mathrm{TdS}-\mathrm{PdV}$?

$$
\left.\left.T=\frac{\partial U}{\partial S}\right)_{V} \quad-P=\frac{\partial U}{\partial V}\right)_{S}
$$

2. Use the Attached JANAF tables to answer the following questions
a) $\Delta \mathrm{H}^{\circ}$ for the reaction below at 1300 K .

$$
\begin{aligned}
& \mathrm{Mg}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})}=\mathrm{MgCl}_{2(\mathrm{~L})}
\end{aligned}
$$

$$
\begin{aligned}
& =-141.340-(-1.993)-(0)=-139.347 \mathrm{Kcal} / \text { gmole }
\end{aligned}
$$

b) the amount of heat it would take to raise one gram mole of pure solid Mg at 500 K to gaseous Mg at 2500 K .

$\mathrm{Mg}_{(\mathrm{S}), 500 \mathrm{~K}}$

Use REFERENCE State

$$
\begin{aligned}
H_{2500}-H_{500} & =\left(H_{2500}-H_{298}\right)-\left(H_{500}-H_{298}\right) \\
& =46.227-(1.267)=44.960 \text { Kcal } / \text { gmole }
\end{aligned}
$$

c) How much heat is required to vaporize solid Mg at 500 K to gaseous Mg at 500 K ?
$\mathrm{Mg}_{(\mathrm{S}), 500 \mathrm{~K}}=\mathrm{Mg}_{(\mathrm{G}), 500 \mathrm{~K}}$

$$
\begin{aligned}
& \Delta H_{R, 500 K}^{o}=\Delta H_{\text {Form_Mg }}^{o}{ }_{(G)}, 500 K-\Delta H_{\text {Form_Mg }}^{o}{ }_{g_{(S)}, 500 K} \\
& =35.107-(0)=35.107 \mathrm{Kcal} / \text { gmole }
\end{aligned}
$$

3. Using only the data provided below, find the Heat of Reaction for the combustion of $\mathrm{C}_{2} \mathrm{H}_{2}$ with oxygen $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2.5 \mathrm{O}_{2(\mathrm{~g})}=2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ at 500 K (Draw A Calculation Schematic)

$$
\begin{aligned}
& \Delta H_{R, 500}^{o}=\Delta H_{R, 298}^{o}+\int_{298 K}^{500 K} \Delta C p d T \\
& \Delta C p=2 C p_{\mathrm{CO}_{2}}+C p_{\mathrm{H}_{2} \mathrm{O}}-C p_{\mathrm{C}_{2} \mathrm{H}_{2}}-2.5 C p_{\mathrm{O}_{2}} \\
& =2 * 13.6+10.5-19.0-2.5 * 8.6=-2.80 \frac{\mathrm{cal}}{K * \text { gmole }} \\
& \Delta H_{R, 298}^{o}=2 \Delta H_{\text {Form_CO }}^{2}, 298 \mathrm{~K} ~+\Delta H_{\text {Form_ } \mathrm{H}_{2} \mathrm{O}, 298 \mathrm{~K}}^{o}-\Delta H_{\text {Form_ } \mathrm{C}_{2} \mathrm{H}_{2}, 298 \mathrm{~K}}^{o}-2.5 \Delta H_{\text {Form_ } \mathrm{O}_{2}, 298 \mathrm{~K}}^{o} \\
& =2 *(-94,000)+(-57,800)-(54,190)-2.5 *(0)=-299,990 \mathrm{cal} / \text { gmole } \\
& \Delta H_{R, 500}^{o}=-299,990-2.80 *(500-298)=-300,556 \mathrm{cal} / \mathrm{gmole}
\end{aligned}
$$

4. The volume change for one mole of Pb going from solid to liquid is $1.25 \mathrm{~cm}^{3} / \mathrm{gmole}$ while the heat of fusion is 4,810 Joules/gmole. What would the melting temperature be at 1000 atm ? The melting point is 600 K at 1 atm .

$$
\begin{aligned}
& s \rightleftarrows l \\
& \frac{d P}{d \ln T}=\frac{\Delta H_{\text {Fusion }}^{o}}{\Delta V_{\text {Fusion }}^{o}} \\
& P_{2}-P_{1}=\frac{\Delta H_{\text {Fusion }}^{o}}{\Delta V_{\text {FFusion }}^{o o}} \ln \frac{T_{2}}{T_{1}} \\
& \ln \frac{T_{2}}{T_{1}}=\left(P_{2}-P_{1}\right) \frac{\Delta V_{\text {Fusion }}^{o}}{\Delta H_{\text {Fusion }}^{o}}=(1000-1) \mathrm{atm}\left[\frac{1.25 \frac{\mathrm{~cm}^{3}}{\mathrm{gmole}}}{4,810 \frac{\mathrm{~J}}{\mathrm{gmole}}}\right]\left(\frac{8.31 \mathrm{~J}}{82.05 \mathrm{~cm}^{3} \mathrm{~atm}}\right) \\
& \ln \frac{T_{2}}{T_{1}}=0.026 \\
& \frac{T_{2}}{T_{1}} \approx 1+0.026 \quad(\text { Or more precisely }, 1.0263341) \\
& T_{2}=T_{1}+0.026 * T_{1}=600+600 * 0.026=600 \mathrm{~K}+15.8 \mathrm{~K}=615.8 \mathrm{~K}
\end{aligned}
$$

5. (Work either a or b. If both are worked only a will be graded.)
a) The vapor pressure of ice at its melting point $(273 \mathrm{~K})$ is 4.579 Torr and increases to 760

Torr at its boiling point of 373 K . Determine the heat of vaporization from these data.
$\frac{\partial \ln P}{\partial(1 / T)}=-\frac{\Delta H_{\text {Subl }}^{o}}{R}$
$\ln \left[\frac{P_{2}}{P_{1}}\right]=-\frac{\Delta H_{\text {Subl }}^{o}}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]$
$\Delta H_{\text {Subl }}^{o}=-R \frac{\ln \left[\frac{P_{2}}{P_{1}}\right]}{\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]}=-8.31 \frac{\mathrm{~J}}{\mathrm{~K} * \text { gmole }} \frac{\ln \left[\frac{760}{4.579}\right]}{\left[\frac{1}{373 \mathrm{~K}}-\frac{1}{273 \mathrm{~K}}\right]}=43,256 \frac{\mathrm{~J}}{\text { gmole }}$
b) The vapor pressure of silver in atm is given by the expression
$\ln P_{\mathrm{Zn}}=-\frac{15,205}{T}-1.255 \ln T+21.79 \quad \mathrm{Zn}_{\text {(Liq) }} \rightarrow \mathrm{Zn}_{\text {(Gas) }}$
i) What is the T-dependant expression for the Heat of Vaporization?

$$
\begin{aligned}
& \frac{\partial \ln P}{\partial(1 / T)}=-\frac{\Delta H_{\text {Vap }}^{o}}{R}=\frac{\partial\left(\ln P_{Z n}=-\frac{15,205}{T}-1.255 \ln T+21.79\right)}{\partial(1 / T)} \\
& \Delta H_{\text {Vap }}^{o}=-R \frac{\partial\left(-\frac{15,205}{T}-1.255 \ln T+21.79\right)}{\partial(1 / T)} \\
& \Delta H_{\text {Vap }}^{o}=-R \frac{\partial\left(-\frac{15,205}{T}-1.255 \ln T+21.79\right)}{\partial(1 / T)}=-R\left[\frac{\partial\left(-\frac{15,205}{T}\right)}{\partial(1 / T)}+\frac{\partial(-1.255 \ln T)}{\partial(1 / T)}\right] \\
& \Delta H_{\text {Vap }}^{o}=-R\left[-15,205-1.255 \frac{\partial(\ln T)}{\partial(1 / T)}\right]=-R\left[-15,205-1.255 \frac{\frac{\partial T}{T}}{\frac{\partial T}{T^{2}}}\right] \\
& \Delta H_{\text {Vap }}^{o}=(15,205-1.255 T) R
\end{aligned}
$$

ii) What is the difference in zinc's $\mathrm{Cp}_{(\mathrm{Gas})}$ and $\mathrm{Cp}_{(\mathrm{LLq})}$?

$$
\Delta C p_{\text {Vap }}=\frac{\partial \Delta H_{\text {Vap }}^{o}}{\partial T}=-1.255 R
$$

Chlorine. Diatomic (Cl_{2})
(Reference State - Ideal Gas) Mnl. It. - 70.906

т, *к.		s^{*}	-($\mathrm{F}^{*}-\mathrm{H}^{\text {+w }}$)	$\mathbf{H P}^{*}-\mathrm{H}^{\text {\% }}$	$\Delta \mathrm{H}$;	$\Delta \mathrm{F}$;	$\log _{\mathrm{K}}^{\mathrm{r}}$
100	7:000	43:009	TNEINTITE	$\xrightarrow{2.194}$:000	:000	:000
200 298 1	7.576 8.111	¢ ${ }_{\substack{50.156 \\ 53.299}}$		-7.72	:000	:000	-000
300	8.119	53.339	53.289	. 015	.000	.000	.000
\$00	${ }_{8}^{8.8337} 8$	\$59.724	\$93.612	- 8.645	.000	:000	-.ovo Ooue
700	- ${ }_{8}^{8.741} 8$	\$90.212	54.0083	2.567	-000	-000	:000 0000
800	${ }_{8.878}$	${ }_{610} 81.77$	(59.603	4.331	.000	.000	.000
900	${ }_{8}^{8.922}$	${ }^{62.796}$	56.095	3.221 6.225 0.15	-000	-000	.000
	8.985	64.592					
1200 1300	9.010	86.375 06097	58.782	7.712	-000	-000	-000
	${ }_{9.051}$	660.767	(-	:000	-000	:000
1500	9.069	67.392	60.310	10.626	:000	:000	:000
1600	9.086	67.978	60.771	11.532	-000	.000	
1780	-117	88,	612 211 61.633		:000	:000	
1900	${ }^{\text {O }}$.133	69.546	62.036	14.264	.000	.000	-000
2000	9.149	${ }^{70.013}$	62.423	15.179	.000	.000	
3100 2200	${ }^{9} 9.1866$	70.4886	S2.795 $\substack{3 \\ 6.154}$	${ }_{17}^{16.094}$:000	:000	:000
	$\bigcirc \cdot 203$	${ }_{71299}$	63.409	17.931	.000	. 000	.000
2400 2500	-	71.087 72.064	chens 66.154 60.154		:000	:000	:000
27000	9.208	72.427	86.465	20.701	-000	.000	-000
${ }_{280}^{2700}$	${ }_{9.319}^{9.293}$	${ }_{73.116}^{72.77}$		${ }_{22,560}^{21.028}$:000	:000	:000
2900	9.346		65.942	23.493	.000	.000	
3000	9.374	73.760	65.617	26,429	.000	.000	.000
3100	9.403	74.068 74.367	65.985	25.368	-000	.000	.000
3300	9.461	${ }^{74.658}$	66.109	27.255	.000	:000	.000
3400	0.490	74.941	660.046	28.202	.000	.000	.000
3500	9.518	75.218	66-987	20.153	.000	.000	.000
3600 3700	$\bigcirc 0.556$	75:485	67.122 67.352		:000	:000	:000
3300	9.598	${ }^{76.002}$	87.576	33.020	.000	.00u	.000
3900 000	9.682	76.252 76.640	88, 88.7016		:000	:000	.000
4100	${ }^{9.666}$	76.734 76.967		34.970 35.678	:000	-000	.000
4200	9.663	70.987		33.078		.000	:000
4.60	9.7718	77.419	边	37.018	-000	:000	:000
4500	9.732	77.637	(\%9017	${ }_{38.791}$:000	:000	.000
4600	9.743	${ }_{78}^{77.851}$	69.707	30.7044	-000	\bigcirc	-000
4800	9.762	78.266	60.57t	-1.715	.voo	.000	.000
5000	9.777	($\begin{aligned} & 78.688 \\ & 78.005\end{aligned}$	(69.75s	(3.692	:000	:000	:000
100	9.778	78.859		-4.046			
	9.783	79.049	70.275	45.626	.000	00	.000
5300	9.787	79.235	70.442	46.603	.000	.000	.000
5400	9.790	${ }^{79.418}$	${ }^{70.607}$	47.562	.00	.000	.000
5500	9.792	79.598	70.788	48.581	.000	. 00	
\$500	9.794	79.7947		50.5400	:000	:000	:000
5800	9.797	${ }^{80.118}$	77.379	\$51.499	.000	. 000	.000
0000	9.798	${ }_{80}^{80.450}$	715,400	53.459	:000	:000	:000

Chlorine, diatomic (Cl_{2})
(ideal gas - rgperence state)
MOL. WT. $=70.906$
oround state configuration ${ }^{1} \Sigma$
${ }^{1} \Sigma^{+}$
$\Delta H_{\mathrm{f}} \mathrm{O}_{\mathrm{o}}=0$
$S_{298.15}^{*}-53.29 \pm 0.01 \mathrm{cal} . \operatorname{deg} .^{-1}$ mole $^{-1} \quad \Delta H_{f}^{*} 298=0$
glectronsc Levels and Nuitipiticties

Heat of Poreation.
The neat of formation ($\Delta \mathrm{Hi}_{\mathrm{f}}^{*}$) for $\mathrm{Cl}_{2}(\mathrm{~g})$ is zero at all temperatures, by definition.

Heat Capacity and Entropy.
The functions adopted here were calculated by R. L. Potter, J. Chem. Fhys. 31, 1100 (1959) using a direct summation over the energy levels not including those of non-bonding states. The functions are for the naturaily occurring isotopic composition.

The absorption spectrum of chlorine has been observed by h. E1110tt, Proc. Roy. Soc. A 127, 638 (1930); C. P. Goodeve and B. A. Stephens, Trans. Poraday yoc. 32, 1517 (1936); H. Stammere 1 ch , R. Porner 19 and Y . Tavares, Spectrochis. Acte, 12, 775 (1961); Y. V. Rao and P. Venkateswariu, J. Nol. Spectr. 2, 173 (1962); and A. E. Doughas, Co the 11sted ground sotare spectroscopic constants for the naturolly occurring tsotoplc composition are based upon the The 11sted ground state apectroscoplc constants for the naturo11y occurring Mootopte coaposition (1958)

The molecular structure of gaseous chiorine was determined by the sector-microphotometer nethod of electron diffraction by s . shibata, J. Phys. Chem. 67, 2256 (1963). The value of $\mathrm{r}_{\mathrm{e}}(\mathrm{C} 1-\mathrm{C1})$ was found to be 1.986 i . The other r_{e} values, $1.983-1.989 \mathrm{~h}$, were reported by G . Herzberg, "Spectra or Dlatomic Molecules", D. Van Nostrand ., 2nel, 1950, W.a. Richarss nd

Magnesium Dichloride $\left(\mathrm{MgCl}_{2}\right)$

$S_{298.15}^{\circ}=21.422$ cal. deg. ${ }^{-1}$ mole $^{-1}$
maonesiun dichloride (MgCl_{2})
$\mathrm{T}_{\mathrm{m}}=987^{\circ} \mathrm{K}$.
(CRYSTAL)

MoL. WT. $=95.218$

Heat of Pormation.

The adopted $\mathrm{CH}_{\mathrm{f}}^{\mathrm{f}} 298.15{ }^{-}-153.35 \pm 0.11 \mathrm{kca1}$. mole ${ }^{-1}$ 1s from heat of solution eeasurements reported by C. H. Showate and E. K. Hurfmen, J. Am. Chem. Soc. 65,1625 (1943). Shomate and Huffaans heat of bolution of Mg in $1 \mathrm{MHC1}$ (AH $--111.322 \pm 0.061 \mathrm{kca1}$. mole ${ }^{-1}$) has been substantiated for calibration purposes by S. R. Ounn and B. B. Cunningham, J. Am. Chem. Soc., $79,1563(1957)$ ($\Delta 4--111.3$ kcal. mole ${ }^{-1}$) and by E. P. Westrum Jr. and
L. Eyring, J. hm. Chea. Soc., 74 , $2045(1952)(\Delta 4-111.27$ kcal. mole L. Eyring, J. Am. Chea. Soc., 74,2045 (1955) (At -111.27 kcal . Bole ${ }^{-1}$). Auxill1ary heat or dilution and heat NSRDS-NBS 2, Nat '1. Bur. Stds., Apr11 1965 and From D. D. Wagman et al., N.B.s. Technical Note 270-1, Cet 1965

Heat capacity and Entropy.
High temperature heat content data by G. E. Moore, J. Am. Chea. Soc. 65, 1700 (1943) were Joined by Shomate correletion with low temperature heat capacity data reported by K. K. Kelley and G. E. Moore, J. Am. Chem. Soc.
 ture data and 18 based on $\mathrm{s}_{53.6}^{\circ}=2.006 \mathrm{ca1}$. deg. ${ }^{-1}$ mole ${ }^{-1}$

Melting Data.
$\Delta H_{m}=10.30 \pm 0.05 \mathrm{kcal}$. mole $\mathrm{e}^{-1} 10$ taken from heat content measurements of Koore $10 \mathrm{c} . \mathrm{cit} . \mathrm{T}_{\mathrm{m}}=987^{\circ} \mathrm{K} .1 \mathrm{~s}$ from National Bureau of standards circular 500, 1952.

Sublimation Data.

The value of $\mathrm{AH}_{\mathrm{s}}^{\circ} 298.15$ was derived by 2 nd and 3 rd 10 w analyses of vapor pressure data. See the $\mathrm{MgCl}_{2}(\mathrm{~g})$ table for deta 11 s .

Magnesium Lichloride $\left(\mathrm{MgCl}_{2}\right)$ (Licuid) Mol. it. $=95.218$							
т. *к.	${ }_{\text {c }}$	$\begin{aligned} & 1 . \text { mole } \\ & \mathrm{s}^{-4} \end{aligned}$	$\overbrace{-\left(\mathrm{F}^{*}-\mathrm{H}_{2 q}\right) / \mathrm{T}}$	$\overbrace{\mathrm{H}^{*}-\mathrm{H}_{\text {\% }}}$	cal. mole ${ }^{-1}$ ΔH_{i}	$\Delta \mathrm{F}_{\text {i }}$	Los K_{F}
$\begin{aligned} & 100 \\ & 200 \\ & 298 \\ & 298 \end{aligned}$	17.000	4	10.049	.000	143.779	- 134.789	98.798
$\begin{aligned} & 100 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 134673 \\ & =171768 \\ & 128.888 \end{aligned}$	
$\begin{gathered} 000 \\ \text { ono } \\ \hline 800 \\ 1000 . \\ 1060 \end{gathered}$				5.505 7.509 97709 11.969	$\begin{aligned} & -142.777 \\ & =\begin{array}{l} 162.276 \\ -141.695 \end{array} \end{aligned}$		
$\begin{aligned} & 1100 \\ & 1200 \\ & 1300 \\ & 1500 \end{aligned}$	22.000 22.2000 22.2000 220.000 22.000						22.375 20.023 180.04 180.290 14.692
$\begin{aligned} & 1600 \\ & \frac{1}{1700} \\ & 1600 \\ & 1600 \\ & 2000 \end{aligned}$							
	22.000 2220000 2222000 222.000 22.000		52.706 53.506 545883 55.77 55.045				
$\begin{aligned} & 2600 \\ & 2700 \\ & 27000 \\ & 29000 \\ & 3000 \end{aligned}$	22.000 2222000 222.000 22.000 22.000						4.202 3.700 3.235 2.805 2.605 2.65

MagsesivM Drchlortde (MgC1 ${ }_{2}$)
(tDPAL gas)

Point Group Doh
$s_{298.15}=66.184=0.5 \mathrm{gibbs} / \mathrm{mot}$
Ground State ouantun veight $=1$
Vibrational Frequencies and Degeneracies
$4_{1} \mathrm{~cm}^{-1}$
590 (1)
$88 \quad(2)$
[2731 (1)
Bond Distance: $\mathrm{Mg}_{\mathrm{g}}-\mathrm{Cl}=2.19 \mathrm{~A}$
Bond Distance: $\mathrm{Mg}-\mathrm{Cl}=2.1 \mathrm{C}$
Rotational Constant: $B_{0}=0.05003 \mathrm{cn}^{-1}$
Heat of Formation
Analysis of vapor pressure data on MgCl_{2} is clouded by conflicting evidence for the anount of dimer in the vapor. Berkowitz and Marquart (1) by mass spectrometer studies found about 21 dimer at $920^{\circ} \mathrm{K}$ and derived $0 H_{\mathrm{D}}=-39.2 \mathrm{kal} / \mathrm{mol}$
and $\Delta S_{\mathrm{p}}=-29.9 \mathrm{~g}$ ibsa/no1. Schrier and Clark (2) from gas transpiration data calculated about 301 dimer in the saturated vapor at $1300^{\circ} \mathrm{K}$, with $\Delta \mathrm{H}_{\mathrm{p}}=-32.0 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S_{\mathrm{p}}=-18.8 \mathrm{gibbs} / \mathrm{mol}$. Thermodynnnic functions for the gaseous nonoser adopted here are clearly not compatible with large anounte of dimer and it is assured for the present that the nass spectroneter results are correct.

Several vapor pressure studies have been publifhed and third lav analyses are given below. Berkowitz and Marquart (1) gave a single point while the remaining pubifcations gave only equations but not individual points. Total pressures calculated fron the equations were corrected for diner,

$\frac{\text { Source }}{\text { Berkowitz and Marquart (1) }}$
Schrier and Clark (2)
Hildenbrand et al. (3) Hildenbrand et al. (4)
Fischer et al. (5)

Tenperature Range (* X)
920
1208-2413
802-985
800-970
1136-2435

$\begin{aligned} & 58.10 \\
& 59.55-59.68 \\
& 59.55\end{aligned}$
$\begin{aligned} & 59.55-59.68 \\
& 59.55-59.19\end{aligned}$

$59.55-59.19$
$59.53-59.38$

$59.30-59.56$

The selected value for $\Delta H^{2}{ }_{298}$ is 59.55 keal/mol which is conbined with sHf ${ }_{298}$ of the crystal to give $\operatorname{siff}_{298}{ }^{\circ}(g)$
$93.80 \mathrm{kcal} / \mathrm{mol}$.
eat Capac.ty and Entropy
Shite, Mann, and co-workers (g) by matrix infrared spectroscopy deternined the molecule to be 1inear with the
asymmetric stretching frequency at $590 \mathrm{~cm}^{-1}$ and the doubly degenerate bending frequency at $88 \mathrm{cn}^{-1}$. The symmetric
Stretehing frequency yas estinated as $273 \mathrm{cn}^{-1}$. The asymuetrle stretching uas oboerved by Buchier and Klemperer ($\left.\mathrm{\eta}\right)$
at $597 \mathrm{~cm}^{-1}$ and by pandall et al. (g) at $599 \mathrm{~cm}^{-1}$. both by infrared spectroscopy of the vapor at high temperature.
 1ength was determined as $2.18 \dot{A}$ by Akishin and Spiridonov (10).

Reforencen

1. J. Berkowitz and J. R. Marquart, J. Chem. Phys. 37, 1953 (1962)
2. E. E. Schrier and H. M. Clark, J.
. and ‥ D. Potter, J. Chen. Phys. 40. 2882 (1954)
3. V. Fischer, 7. Petzel, and S. Lauter, 2. anorg. a11gen. Chen. 333, 226 (1954).
4. Unpubitshed work cited by D. L. Hidenbrand, J. Chen. Phys., in press.
5. A. Buchler and W. Klemperer, J. Cher. Phys. 29, 121 (1958)
6. S. P. Randal1, F. T. Greene, and J. L. Margrave, J. Phys. Chen. 63, 758 (1959).
7. P. A. Akiehin and Y, P. Spiridonov, Kristallografiya 2, 475 (1957).
(Reference State) At. Wt. $=24.32$

(REPERENCE STATE)

Crystal	Below $922^{\circ} \mathrm{K}$
Liquid	$922^{\circ} \mathrm{K}$ to $1378^{\circ} \mathrm{K}$
Ideal gas, monatomic	above $1378^{\circ} \mathrm{K}$

ee crystal, 1 quid, and 1deal monatomic gas for deta11s

AT. WT. $=24.32$

$\Delta H_{f}^{*} O=0$
$\Delta H_{8}^{*} 298.15=35.28 \pm 0.01$ kcol. mole^{-1}
$\mathrm{T}_{\mathrm{m}}-922 \pm 0.5^{\circ} \mathrm{K}$
$\Delta H_{f}^{*} 298.15=0$
$s_{298.15}^{*}=7.814$ cel. de5. ${ }^{-1}$ mole e^{-1}
$\Delta \mathrm{A}_{\mathrm{m}}=2.14 \mathrm{kcal} . \mathrm{mol}^{-1}$

Heat of Fornation.
zero by derinition,

nest Capacity and Entropy.

The following hest capocity measurenents were considered in drawing a smooth curve of C_{p} with T: P. L.

 Bornkesse1 ($190-300^{\circ} \mathrm{K}$) 2. Metal1kunde $51,482-5$ (1980)) ; H. Seekamp (291-7 $73^{\circ} \mathrm{K}$) Z. anorg. Chem. 195, 345 (1931);
 kould not have sitered the $\mathrm{C}_{\mathrm{p}}-\mathrm{T}$ curve: D. L. MartIn ($0.4-1.5^{\circ} \mathrm{K}$) Proc. Fhys. Soc (London) 78 , 1482-8 (1961), I. Estermann, S. A. Friedberg, and J. S. Goldman (1.8-4.2*K) Phys. Rev. 87, 582 (1952) ; g. P. Eastmen and W. H. Rodebush ($74.9-288.5^{\circ} \mathrm{K}$) J. An. Chem. Soc. $\frac{40}{} 489(1918)$; W. O. sobs, K. F. Sterrett, r. S. Cratg, and W. 8.

 Anorg. chem.
cited above.

relting.

Melting point is from J. L. Houghton and R. J. M. Payne ($922 \pm 0.5^{\circ} \mathrm{K}$) J. Inst. Met. 54, 279 (1934). A1so ted but not used were: R. Choowtok ($923^{\circ} \mathrm{K}$) J. Not. Wot. 39, $285-300$ (1928) ; K. R. D. Jones ($220.5^{\circ} \mathrm{K}$) J. Inst. Net. 46, 395-419 (1931).

The heat of melting is from D. R. Stull and R. A. KeDonald (1oc. cit.)

Heat of Sub1mation.

Is obtained by third law colculations from the vapor pressure data on the sol1d by p. p. coleman end A. E.
 71d. 72, $33-9,44-8(1942)$; Aquid by E. Sche11 and P. Wolf, Z. Metallkunde $\frac{50}{}, 229-35$ (1959) ; A. Wejnarth, Tek Brunner, Holv. Chim. Acta, 17, 958-69 (1934); and H. Hertmann and R. Schnelder, Z. anorg. Chem. 180, $275-83$ erratic of the
 vetter and 0. Kubaschewsk1, z. Elektrochem. 57, 243 (1953): W. Leitgebel, z. anorg. Chem. 202, 312 (1931);

т. \times к.	c;	${ }^{\text {s }}$		$\mathrm{H}^{-}-\mathrm{H} ;$	AH;	$\Delta \mathrm{F}$;	$\log _{\text {K }}$
$\begin{gathered} \substack { 100 \\ \begin{subarray}{c}{200{ 1 0 0 \\ \begin{subarray} { c } { 2 0 0 } } \\ {298} \end{gathered}$	5.933	10.159	10.159	.000	${ }^{2.158}$	1.559	1.009
$\begin{gathered} 300 \\ \text { siog } \\ \text { soc } \end{gathered}$	$\text { 5:80\% } 9.80$		10.139 $10: 895$ 10.85			(1.458	(1060
$\begin{gathered} 800 \\ \cline { 1 - 3 } \\ \text { 200 } \\ 100 \end{gathered}$						(ist	:273
	\%.180			¢.673	(.000	.oio	-000
$\begin{gathered} 12000 \\ \text { 1200 } \\ \text { 2000 } \\ 2000 \end{gathered}$						(eate	(080

manessivm (mg)
$\Delta 4_{\mathrm{f}}^{*} 298.15=[2.158] \mathrm{kca1} . \mathrm{mole}^{-1}$
$T_{\mathrm{m}}=922 \pm 0.5^{\circ} \mathrm{K}$
$T_{b}=137 \theta^{\circ} \mathrm{K}$
(LIquid)
AT. мT. $=24.32$

Heas: of Pormation.
 Heat capacity and Entropy.

The heat capacity measurements of D. R. Stull and R. A. MeDonold (950-1100 ${ }^{\circ} \mathrm{K}$) J. Am. Chen. Soc. 77, 5293 (1955) were used. Outside of the observed range c_{p} was extrapolated 11nearly with temperature. Below T_{m} the peratures the c_{p} or the oryatal is used. $s_{298.15}^{\circ}$ was calculated from that of the solid.
neiting.
see crystal for detalls.

Vaporization

The normal boiling point was calculated by the third law and $\Delta H_{s} 296.15^{\circ}$. This coapares with $1377^{\circ} \mathrm{K}$ conputed from the general vapor pressure equation for 11quid $\mathrm{Mg}_{\mathrm{g}} \mathrm{given}$ on $\mathrm{p} 22^{291}$ of omelins handbuch der anorgantschen Chemie, System-Mummer 27 (1952), ond expertmentally deteratned values: $1376 \pm 5^{\circ} \mathrm{K}$ by A. Schne dder ond . Esc C ,
Z. Blektrochem 45 Leitgebel, z. anorg. Chem. 202,305 (1931); and $1395^{\circ} \mathrm{K}$ by areenwood, Chem. News 104, 31 (1911).

The $\Delta H_{v}{ }_{1378}{ }^{\text {1s }}$ bsesed on the $11 q u 1 d$ and ideal gas tables.

т, *к.	c;	s**		$\overparen{\mathrm{H}^{*}-\mathrm{H}^{2}{ }^{\text {a }}}$	al. mole	$\Delta \mathrm{F}_{\text {i }}$	
			-($\mathrm{F}^{*}-\mathrm{H}_{2}$		$\Delta \mathrm{Hi}$		$\log ^{\mathrm{K}} \mathrm{p}$
\bigcirc	.000	.0vo	infinite	1.481	34.956	34.906	infinite
100	4.968	${ }^{33.0776}$	${ }^{39.9271}$	-984	35.339	33.558	$\underbrace{71.153}$
200 298	8:868	332.520	35.058	.488	35.273 35.281	29.676 27.025	(
300	-.968	33.533	35.504	. 009	35.279	20.974	- 10.650
500	-:868	3 ${ }^{3 \times 6.964}$	35.099	1:006	35.162 35.1017	220.222	- $\begin{gathered}13.233 \\ 9.398\end{gathered}$
600 700	-.968	30.978 30.74.	颜36.479	1.500	364.845 36.648 3.68	18.816	$=\begin{aligned} & 0.853 \\ & 5045 \\ & 0.045\end{aligned}$
800	4.968	40.407	37.291	2.493			- ${ }^{3.6097}$
900	-.968	40.993	37.670	2.990	34.156	10.939	- ${ }_{2656}$
000	4.968	41.516	39.029	3.487	31.734	8.557	1.870
1100 1200	4.0988	41.990	${ }_{\substack{38.368 \\ 38.688}}$	3.984	31,429	6.232	- ${ }^{1.282}$
	-1088			4.481	310, 31.098		- ${ }^{1724}$
1200			\%			.000	.000
1500	-.968	47.530	39.550	5.971	.000	.000	.000
1800	4.968	43.851	39.809	6.468	. 000		
1700 1800	-:968	${ }^{4} 46.152$	${ }^{40.056}$	\%.965	.000	-ooc	-000
1900	-.968	44.705	40.518	7.98	:000		
2000	4.969	44.960	40.732	8.455	:000	:000	:000
2100	-.969	${ }^{4 \times 10202}$	40.939	8.932	. 000	. 000	. 000
${ }_{2300}^{2200}$	4:970	48,433 46.654	${ }_{\substack{410138 \\ 41.330}}$	9.4049	.0000	.000	-000
2400	4.974	45.868	41.515	10.443	$\therefore 000$:000	:000
2500	4.978	40.069	*1.603	10.941	:000	:000	:000
2000	-9893		${ }_{\substack{41.865 \\ 87.041}}^{1}$	11.439 11.038 1.088	-000	-000	.000
2800	4.998	${ }_{40}^{6} 6.634$	${ }_{42.192}$	${ }_{12,637}$:000	:000	:000
2000	S.023	- 48.818	- 42.3598	12.937 13.439	:000	:000	:000
3100	5.040	47.145	42.647	13.982			
3200	5.060	47.305	\$2.790	14.447	:000	:000	:000
34600	S.114	477.461		120:934	-000	-000	.000
3500	5:148	47.762	43.197	15.977	:000	:000	:000
3600		47,908	43.326	$\xrightarrow{16.494}$.000	.000	.000
3800	5.278	48.190	49.575	${ }_{17}^{17.540}$:000	:0000	:000
3900	5.332	48.328		18.070	.000	.000	:000
4000	S.392	49.464	43.812	18.606	.000	.000	:000
4000	5,457	${ }^{40.598}$	43.927		.000	.000	.000
4300	5.604	40.861	44.151	${ }_{20.254}$:000	-000	:0000
4400	S.686	an. 9091 40.120	44.259 6.368		-000	-000	:000
	5.773	40.120	44.366	21.392	.000	.000	:000
4800 4700	5,806	-40.248 ${ }_{6}$	4.4.471	$\underset{\substack{21.074 \\ \text { 22,5s }}}{ }$:000	.000	.000
4800	S.067	-00. 71	94.675	cele	:000	:000	:000
\$9000	6.176 6.289	- 40.02754	46.775	23.779 24.602	:000	-000	-000
				26.402	.000		.000
5100 5200	8.407	${ }_{50}^{40.879}$	45.070	25.037 25.68.	:000	:000	:000
5300	6.058	5 SO 138	45.150	280.343	.000	.000	:000
S5400	8.7909 8.927			87,7015	:000	:000	:000
5600	7.069		-5.436	28.401	.000	.000	
5880	7.367	(${ }_{\substack{90.034 \\ 50.761}}$	-45.527	${ }_{69.844}^{29.115}$.000	.000	.000
5900	7.523		45.704	30.589	:000	:000	$\bigcirc 000$
6000	7.684	51.016	45.791	31.349	.000	.000	:000
			Dee. 31,	960; sept. 30	1962		

manestiv, monatomic (Mg)
(Mg)
(idgrl ans)
AT. WT. $=24.32$
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ} \mathrm{O}=35.0 \pm 0.01 \mathrm{kcal}$. mole ${ }^{-1}$

$$
\text { around state }{ }^{1} s_{0}
$$

$$
\begin{aligned}
& \Delta H_{f}^{\circ} 298.15=35.28 \pm 0.01 \mathrm{kcal} \cdot \mathrm{~mole}^{-1} \\
& \mathrm{~s}_{298.15}^{\circ}=35.504 \mathrm{cal} \cdot \mathrm{~mole} \mathrm{e}^{-1} \mathrm{deg} .^{-1}
\end{aligned}
$$

glectronic Levels and Multiplicities					
$\underline{\epsilon_{1}, \mathrm{~cm}^{-1}}$	$\underline{\mathrm{g}_{1}}$	$\underline{\epsilon_{2}, \mathrm{~cm}^{-1}}$	$\underline{g_{1}}$	$\underline{\epsilon_{1}, \mathrm{~cm} .}{ }^{-1}$	${ }_{1}$
0.00	1	46403.14	5	57020	
21850.37	1	47850.0	9	57204	28
21870.43	3	47957.0	15	57854	12
21911.14	5	49346.6	3	58469	58
35051.36	3	51872.4	3	59315	51
41197.37	3	52556.4	1	59878	51
43503.0	1	53134.7	5	60397	102
				60887	154

Heat of pormation
$\Delta \mathrm{f}_{\mathrm{f}}^{\circ}{ }_{298.15}\left(=\Delta \mathrm{H}_{\mathrm{s}} 298.15\right)$ 18 calculated as described on the table for crystal.
leat capacity and Entropy.
Thermodynam1e functions were calculated using electronic levels and multiplicities from C. E. Moore [Nati. Bur. Standards C1rc. 467 , vol. 1 (1949)]. H1gher levels were averaged.

