South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

MET 320 (Data from the text and Hultgren were provided)

HQ 3

Dec 6, 2007

1. a) Referring to Table 8.1, cite the gases that exhibit a two phase gas-liquid behavior at room temperature (298 K).

b) Telemetry from the Space Shuttle oxygen tank shows T= 184 K and P = 149 atm. How many gram moles of oxygen remain in the 30-Liter tank?

- 2. Show on the attached Ellingham Diagram The pressure of O₂ in equilibrium with Si and SiO₂ at 1300°C
 - a) The H₂/H₂O ratio in equilibrium with Si and SiO₂ at 1300° C
 - b) The CO/CO₂ ratio in equilibrium with Si and SiO₂ at 1300°C
 - c) Estimate the for one gram mole of Mg i) Heat of Fusion
 - ii) Heat of Vaporization.

3. Solve for the equilibrium moles of HI at 500 K and total pressure of 5 atm.

H_{2 (g)} + I_{2 (g)} = 2 HI (g)
$$\Delta G^{\circ}$$
 = -RT ln K = (see text)

The table below shows the number of moles of each component initially.

Species	Initial Moles	
HI	3	
H ₂	10	
I ₂	4	
total		

4. Calculate the Gibbs energy change for the oxidation of pure, liquid Mg with Cl₂ at a pressure of 1×10^{-8} atm to form pure, solid MgCl₂ oxide at 1200 K. Use the data from Table A-1 in the text.

- 5. What is the Δ H of for the following scenarios? (Use the handouts from class for data.) a) Three moles of liquid Al at 1273 K mix with 7 moles of liquid Ag at 1273 K.
 - b) Two moles of liquid Al at 1273 mix with a million moles of Ag-Al alloy at 1273 K with a mole fraction of 0.3 Al.