South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

(Data from the text and Hultgren were provided)

1. a) Referring to Table 8.1, cite the gases that exhibit a two phase gas-liquid behavior at room temperature (298 K).
b) Telemetry from the Space Shuttle oxygen tank shows $\mathrm{T}=184 \mathrm{~K}$ and $\mathrm{P}=149 \mathrm{~atm}$. How many gram moles of oxygen remain in the 30 -Liter tank?
2. Show on the attached Ellingham Diagram The pressure of O_{2} in equilibrium with Si and SiO_{2} at $1300^{\circ} \mathrm{C}$
a) $\mathrm{The} \mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio in equilibrium with Si and SiO_{2} at $1300^{\circ} \mathrm{C}$
b) The $\mathrm{CO} / \mathrm{CO}_{2}$ ratio in equilibrium with Si and SiO_{2} at $1300^{\circ} \mathrm{C}$
c) Estimate the for one gram mole of Mg
i) Heat of Fusion
ii) Heat of Vaporization.
3. Solve for the equilibrium moles of HI at 500 K and total pressure of 5 atm .

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})=2 \mathrm{HI}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}=(\text { see text })
$$

The table below shows the number of moles of each component initially.

Species	Initial Moles		
HI	3		
H_{2}	10		
I_{2}	4		
total			

4. Calculate the Gibbs energy change for the oxidation of pure, liquid Mg with Cl_{2} at a pressure of 1×10^{-8} atm to form pure, solid MgCl_{2} oxide at 1200 K . Use the data from Table A-1 in the text.
5. What is the $\Delta \mathrm{H}$ of for the following scenarios? (Use the handouts from class for data.)
a) Three moles of liquid Al at 1273 K mix with 7 moles of liquid Ag at 1273 K .
b) Two moles of liquid Al at 1273 mix with a million moles of Ag - Al alloy at 1273 K with a mole fraction of 0.3 Al .
