SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY DEPARTMENT OF MATERIALS & METALLURGICAL ENGINEERING

MET 320

Final Exam

Dec. 16, 2008

Constants: $R = 1.987 \text{ cal/K} \cdot \text{gmole} = 8.31 \text{ J/K} \cdot \text{gmole}$ $F = 23,059 \text{ cal/volt} \cdot \text{gram equivalent} = 96,525 \text{ Joule/volt} \cdot \text{gram equivalent}$

- Five moles of an ideal gas at 2 atm and 500 K are adiabatically compressed to 20 atm.
 a) What is the final temperature?
 - b) How much heat was required?

c) How much work was required?

2. What is the theoretical amount of work that would be required to pump 100 Joules of heat from the outside air at -10 $^{\circ}$ F (-23 $^{\circ}$ C) into an office at 300 K?

3. An Airgas[®] HP-40 gas cylinder containing oxygen has a volume of 490 liters. If the pressure in the tank is 2190 psi (149 atm) at 307 K, how many moles of O₂ does it contain?

4. Consider molten cryolite (Na₃AlF₆) *saturated* with alumina (Al₂O₃). [Note that the activity of the oxide is then, of course, unity relative to pure, solid Al₂O₃ since it is in equilibrium with the pure solid.]

 $Al_2O_{3(S)} = 2Al_{(L)} + 1.5O_{2(G)}$

a) What is ΔG for the reaction to form O₂ gas at a pressure of 0.21 atm and pure, liquid Al?

b) What voltage is required to electrolyze the alumina to form O_2 gas at a pressure of 0.21 atm and pure, liquid Al?

5. How many degrees of freedom are there for a system consisting of $FeO_{(s)}$, $Fe_{(s)}$, $C_{(s)}$, $CO_{2(g)}$, $CO_{(g)}$, and $N_{2(g)}$? Complete two independent reactions below.

 $FeO + C = Fe + ____ CO_2 + C = ____$

6. Show how to find the adiabatic flame temperature for the combustion of C_2H_2 with air (21% O2 and 79% N₂). The air and the C₂H₂ start at 500 K. Use the data provided below only.

Species	Heats of Formation	Cp
	(calories/g mole at 298°K)	(cal/ gmole °K)
$C_2H_2(g)$	+ 54,190	19.0
$H_2O(g)$	- 57,800	10.5
$CO_{2(g)}$	- 94,000	13.6
$O_{2(g)}$		8.6
N2(g)		7.0

 $C_{2}H_{2}(g) + 2.5O_{2}(g) = 2CO_{2}(g) + H_{2}O(g)$

- 7. Show and label on the attached Ellingham Diagram
 - a) The pressure of O_2 in equilibrium with Ti and TiO₂ at 1000°C. Ans:
 - b) The CO/CO₂ ratio in equilibrium with Si and SiO₂ at 1000 °C. Ans:
 - c) The oxygen potential that C fixes at temperatures
 - i) below 500 $^{\circ}$ C and
 - ii) above 1000 °C.
- 8. For the composition marked with an \blacklozenge , find
 - a) The 1st crystal to form upon cooling from the all liquid state. Ans:
 - b) The temperature that the 1st crystal appears Ans:
 - c) The final three crystals Ans:
 - d) The approx percent liquid (label diagram and use algebraic notation) at 1300 °C. Ans:

Scratch Paper