South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

MET 320	Final Exam	Dec.18, 2003		
	Closed book - No Calculators – No Notes	10:00 - 12:00		

Data on 1) last sheet of exam and 2) unattached data sheets

- Two moles of an ideal gas at 2 atm and 300 K are adiabatically compressed to 8 atm.
 a) What is the final temperature?
 - b) How much heat was required?
 - c) How much work was required?

2. How much work would be required to pump 1000 J of heat from a lake at 7 °C to a home at 27 °C?

- 3. Write the Fundamental Equations. dU = TdS - PdV
 dH =
 dA =
 dG =
- 4. Water for your mountain climbing party's tea boils at 90 °C. What is the atmospheric pressure at your location?

5. Find the adiabatic flame temperature for the combustion of C_2H_2 with pure O_2 . The O_2 and the C_2H_2 start at 800 K. Use the data provided below only.

Species	Heats of Formation	Cp
	(calories/g mole at 298°K)	(cal/ gmole °K)
$C_2H_{2(g)}$	54,190	19.0
$H_2O(g)$	-57,800	10.5
$CO_{2(g)}$	-94,000	13.6
O _{2(g)}		8.6
N2(g)		7.0

 $C_{2}H_{2}(g) + 2.5O_{2}(g) = 2CO_{2}(g) + H_{2}O(g)$

6. What pressure of O₂ would be required to oxidize pure, solid Ag to pure, solid Ag₂O at 400 K?

7. Pure, liquid PbO at 1200 K is to undergo electrolysis to form O_2 gas at a pressure of 0.003 atm and pure, liquid Pb. What cell potential is needed?

- 8. Use the data given below for the liquid Cu-Sn system at 1400 K to determine the enthalpy change when (assume all components start in the liquid state at 1400 K)
 - a) 60 moles of Sn and 40 moles of Cu are mixed at 1400 K
 - b) 2 moles of Sn are dissolved in a large quantity of Cu-Sn alloy having a mole fraction of Cu of 0.9.

Heats of Mixing for Liquid Cu-Sn Alloys at 1400 K										
X _{Sn}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
H^{M}	(cal/mole)-666	-979	-934	-715	-475	-264	-97	13	52	
	(cal/mole)-5233									

9. Can one set both the temperature and the pressure in a system composed of $CaO_{(s)}$, $CaCO_{3(s)}$, $CO_{2(g)}$, and $N_{2(g)}$? Show work.

10. Short answer:

a) What condition must exist if one is to compute activities from the phase diagram using the formula?

$$\ln a_i = \frac{\Delta H_{fusion,T_f}^o}{R} \left[\frac{1}{T_f} - \frac{1}{T_l} \right] + \frac{A - C - BT_l}{R} \left[1 - \frac{T_f}{T_l} \right] + \frac{A - C}{R} \ln \left[\frac{T_f}{T_l} \right] + \frac{B}{2RT_l} \left[T_l^2 - T_f^2 \right] \right]$$

- b) What is the difference between ΔG and ΔG° ?
- c) How does one get one partial molar quantity from another?
- d) What is the Relative partial molar heat of mixing for an Ideal solution?

DATA:	
$H_2O_{(s)} = H_2O_{(l)}$	$\Delta H^{\circ} = 6,028 \text{ J/gmole}$
$H_2O_{(l)} = H_2O_{(g)}$	$\Delta H^{\circ} = 43,267 \text{ J/gmole}$

Constants:

 $R = 1.987 \text{ cal/K} \cdot \text{gmole} = 8.31 \text{ J/K} \cdot \text{gmole}$ F = 23,059 cal/volt · gram equivalent = 96,487 Joule/volt · gram_equivalent

Scratch Paper: