South Dakota School of Mines and Technology
 Department of Materials and Metallurgical Engineering

Final Exam
Dec.18, 2003
Closed book - No Calculators - No Notes

Data on 1) last sheet of exam and 2) unattached data sheets

1. Two moles of an ideal gas at 2 atm and 300 K are adiabatically compressed to 8 atm .
a) What is the final temperature?
b) How much heat was required?
c) How much work was required?
2. How much work would be required to pump 1000 J of heat from a lake at $7{ }^{\circ} \mathrm{C}$ to a home at $27^{\circ} \mathrm{C}$?
3. Write the Fundamental Equations.
```
dU = TdS - PdV
dH =
dA =
dG =
```

4. Water for your mountain climbing party's tea boils at $90^{\circ} \mathrm{C}$. What is the atmospheric pressure at your location?
5. Find the adiabatic flame temperature for the combustion of $\mathrm{C}_{2} \mathrm{H}_{2}$ with pure O_{2}. The O_{2} and the $\mathrm{C}_{2} \mathrm{H}_{2}$ start at 800 K . Use the data provided below only.

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2.5 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Species	Heats of Formation (calories $/ \mathrm{g}$ mole at $\left.298{ }^{\circ} \mathrm{K}\right)$	C_{p} $\left(\mathrm{cal} / \mathrm{gmole}{ }^{\circ} \mathrm{K}\right)$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	54,190	19.0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$-57,800$	10.5
$\mathrm{CO}_{2}(\mathrm{~g})$	$-94,000$	13.6
$\mathrm{O}_{2}(\mathrm{~g})$		8.6
$\mathrm{~N}_{2}(\mathrm{~g})$		7.0

6. What pressure of O_{2} would be required to oxidize pure, solid Ag to pure, solid $\mathrm{Ag}_{2} \mathrm{O}$ at 400 K ?
7. Pure, liquid PbO at 1200 K is to undergo electrolysis to form O_{2} gas at a pressure of 0.003 atm and pure, liquid Pb . What cell potential is needed?
8. Use the data given below for the liquid $\mathrm{Cu}-\mathrm{Sn}$ system at 1400 K to determine the enthalpy change when (assume all components start in the liquid state at 1400 K)
a) 60 moles of Sn and 40 moles of Cu are mixed at 1400 K
b) 2 moles of Sn are dissolved in a large quantity of $\mathrm{Cu}-\mathrm{Sn}$ alloy having a mole fraction of Cu of 0.9 .
Heats of Mixing for Liquid Cu-Sn Alloys at 1400 K

X_{Sn}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
H^{M}	(cal/mole) -666	-979	-934	-715	-475	-264	-97	13
$H_{S n}^{M}$ (cal/mole)-5233	-1901	252	706	681	506	311	176	49

9. Can one set both the temperature and the pressure in a system composed of $\mathrm{CaO}_{(\mathrm{s})}, \mathrm{CaCO}_{3(\mathrm{~s})}$, $\mathrm{CO}_{2(\mathrm{~g})}$, and $\mathrm{N}_{2(\mathrm{~g})}$? Show work.
10. Short answer:
a) What condition must exist if one is to compute activities from the phase diagram using the formula?

$$
\ln a_{i}=\frac{\Delta H_{\text {fusion } T_{f}}^{o}\lceil }{R}\left\lfloor\frac{1}{T_{f}}-\frac{1}{T_{l}}\right\rfloor+\frac{A-C-B T_{l}\lceil }{R}\left\lfloor 1-\frac{\left.T_{f}\right\rceil}{T_{l}}\right\rfloor+\frac{A-C}{R} \ln \left\lfloor\frac{T_{f}}{T_{l}}\right\rfloor+\frac{B}{2 R T_{l}}\left[T_{l}^{2}-T_{f}^{2}\right] ?
$$

b) What is the difference between $\Delta \mathrm{G}$ and $\Delta \mathrm{G}^{\circ}$?
c) How does one get one partial molar quantity from another?
d) What is the Relative partial molar heat of mixing for an Ideal solution?

DATA:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}=\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \Delta \mathrm{H}^{\circ}=6,028 \mathrm{~J} / \text { gmole } \\
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}=\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}^{\circ}=43,267 \mathrm{~J} / \text { gmole }
\end{array}
$$

Constants:

$\mathrm{R}=1.987 \mathrm{cal} / \mathrm{K} \cdot \mathrm{gmole}=8.31 \mathrm{~J} / \mathrm{K} \cdot \mathrm{gmole}$ $\mathrm{F}=23,059 \mathrm{cal} /$ volt•gram equivalent $=96,487$ Joule/volt•gram_equivalent

Scratch Paper:

