SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY DEPARTMENT OF METALLURGICAL ENGINEERING

MET 320 Short Exam 4b Closed Book - No Calculators - No Notes

Dec. 6, 2012

Constants:

R = 1.987 cal/K•gmole = 8.31 J/K•gmole; $\mathcal{F} = 96,525$ Joule/(volt*Equivalent)

1. (25 points) Sodium Production by Electrolysis

 $2 \operatorname{Na}_{(1)} + \operatorname{Cl}_{2(g)} = 2 \operatorname{Na}_{(1)} \Delta G^{\circ}_{1000 \text{ K}} = -152,400 \text{ cal/gmole}$

- a) Calculate the cell potential for the electrolysis of pure, liquid NaCl at 1000 K to form Cl₂ at 1 atm and pure, liquid Na.
- b) How would the cell potential change if the Na were in a solution having an activity of Na of 0.01 relative to pure, liquid Na?

<u>Ans a</u>

Ans b

2. (10 points) *Heat of Mixing*

Use the data given below for the liquid Cu-Sb system at 1190 K to determine the enthalpy change when 4 moles of liquid Sb at 1190 K are dissolved in 1,000,000 moles of Cu-Sb alloy at 1190 K having a mole fraction of Cu of 0.6.

Data for the Liquid Cu-Sb System at 1190 K

X _{cu}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
H^{M} (cal/mole)	-983	-1474	-2399	-2458	-2487	-2017	-1586	-978	98	
H^M_{Sb} (cal/mole)	81	266	465	698	1093	1053	-66	-2929	-6800	

3. (15 points) <u>Activity and Activity Coefficient from Integral Molar Gibbs Energy</u> Show how to find the activity <u>and</u> the activity coefficient of Au in a liquid Au-Cu alloy at 1550 K that is 40 atomic percent Cu from the following data:

Gibbs energy of Mixing for the Liquid Au-Cu System at 1550 K

Extra paper (use as needed)

Scratch Paper - discard