Met 320 HQ 3 Compilation

- 5. Estimate the heat of vaporization of Mg from the following data, the vapor pressure at the melting point (922K) is 4.08×10^{-3} atm and its boiling point is 1363K.
- 6. Complete
 - a. reduced temperature = _____
 - b. reduced pressure =_____
 - c. definition of chemical potential
 - d. definition of fugacity_____
 - e. criterion of equilibrium at constant T & P_____
- 3. Calculate Gibbs energy change when one mole of pure, liquid Cu reacts with O₂ at 1 atm to form pure, solid Cu₂O at 1423 K.
- 4. Repeat Problem #3 with the following modifications: Cu is in solution with Ag at a mole fraction of copper of 0.2; the O₂ is at 10⁻⁴ atm; the Cu₂O is liquid dissolved in molten borax glass that is saturated with solid Cu₂O. (10)
- 4. Write the Big 6 equations and describe the standard state for each.
- 3. Real Gas Problem:

a) What volume would one gram mole of ideal gas occupy at 304 K and 73 atm?b) What volume would one gram mole of CO₂ gas occupy at 304 K and 73 atm?

1. Set up a reaction extent problem for

 $3H_2 + N_2 = 2 NH_3$ $K_{EQ} = 1.2$ $P_T = 5 atm$ The table below shows the number of moles of each component initially.

Species	Moles initially	
NH ₃	2	
H ₂	1	
N ₂	1	
total	4	

4. Estimate the melting point of ice at 200 atm. The heat of fusion for ice is approximately 340 J/gram and the density of ice is 0.9 grams per cubic cm.

X.

b) What is the difference between ΔG and ΔG° ?

Next time:

- c) What is the Relative partial molar heat of mixing for an Ideal solution?
- 5. Use the data given below for the liquid Cu-Sb system at 1190 K to determine the enthalpy change when (assume all components start in the liquid state at 1190 K)
 - a) 1 mole of Sb and 4 moles of Cu are mixed at 1190 K
 - b) 10 moles of Cu are dissolved in a large quantity of Cu-Sb alloy having a mole fraction of Cu of 0.3.