Met 320 HQ 3 Compilation

5. Estimate the heat of vaporization of Mg from the following data, the vapor pressure at the melting point $(922 \mathrm{~K})$ is $4.08 \times 10^{-3} \mathrm{~atm}$ and its boiling point is 1363 K .
6. Complete
a. reduced temperature $=$ \qquad
b. reduced pressure $=$ \qquad
c. definition of chemical potential
d. definition of fugacity \qquad
e. criterion of equilibrium at constant T \& P \qquad
7. Calculate Gibbs energy change when one mole of pure, liquid Cu reacts with O_{2} at 1 atm to form pure, solid $\mathrm{Cu}_{2} \mathrm{O}$ at 1423 K .
8. Repeat Problem \#3 with the following modifications: Cu is in solution with Ag at a mole fraction of copper of 0.2 ; the O_{2} is at $10^{-4} \mathrm{~atm}$; the $\mathrm{Cu}_{2} \mathrm{O}$ is liquid dissolved in molten borax glass that is saturated with solid $\mathrm{Cu}_{2} \mathrm{O}$. (10)
9. Write the Big 6 equations and describe the standard state for each.
10. Real Gas Problem:
a) What volume would one gram mole of ideal gas occupy at 304 K and 73 atm ?
b) What volume would one gram mole of CO_{2} gas occupy at 304 K and 73 atm ?
11. Set up a reaction extent problem for

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2}=2 \mathrm{NH}_{3} \quad \mathrm{~K}_{\mathrm{EQ}}=1.2 \quad \mathrm{P}_{\mathrm{T}}=5 \mathrm{~atm}
$$

The table below shows the number of moles of each component initially.

Species	Moles initially		
NH_{3}	2		
H_{2}	1		
$\mathrm{~N}_{2}$	1		
total	4		

4. Estimate the melting point of ice at 200 atm . The heat of fusion for ice is approximately 340 $\mathrm{J} /$ gram and the density of ice is 0.9 grams per cubic cm.
x.
b) What is the difference between $\Delta \mathrm{G}$ and $\Delta \mathrm{G}^{\circ}$?

Next time:
c) What is the Relative partial molar heat of mixing for an Ideal solution?
5. Use the data given below for the liquid $\mathrm{Cu}-\mathrm{Sb}$ system at 1190 K to determine the enthalpy change when (assume all components start in the liquid state at 1190 K)
a) 1 mole of Sb and 4 moles of Cu are mixed at 1190 K
b) 10 moles of Cu are dissolved in a large quantity of $\mathrm{Cu}-\mathrm{Sb}$ alloy having a mole fraction of Cu of 0.3.

