South Dakota School of Mines and Technology Department of Metallurgical Engineering

2001

1. Find the adiabatic flame temperature for the combustion of $\mathrm{C}_{2} \mathrm{H}_{2}$. Use the data below. DRAW CALCULATION SCHEMATICS.
a. With an oxygen-nitrogen mixture which is $50 \% \mathrm{O} 2$ and $50 \% \mathrm{~N}_{2}$. The mixture starts at a temperature of 1000 K and the $\mathrm{C}_{2} \mathrm{H}_{2}$ starts at minus $23^{\circ} \mathrm{C}$.
b. Find the adiabatic flame temperature for the combustion of $\mathrm{C}_{2} \mathrm{H}_{2}$. With air $(21 \%$ O 2 and $70 \% \mathrm{~N}_{2}$). The air and the $\mathrm{C}_{2} \mathrm{H}_{2}$ start at $298^{\circ} \mathrm{K}$.

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2.5 \mathrm{O}_{2(\mathrm{~g})}=2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Species	Heats of Formation (Calories $/ \mathrm{g}$ mole at $298^{\circ} \mathrm{K}$)	C_{p} (cal/ gmole $\left.{ }^{\circ} \mathrm{K}\right)$
$\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}$	54,190	19.0
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$	$-57,800$	10.5
$\mathrm{CO}_{2(\mathrm{~g})}$	$-94,000$	13.6
$\mathrm{O}_{2(\mathrm{~g})}$		8.6
$\mathrm{~N}_{2(\mathrm{~g})}$		7.0

2. Using the attached JANAF Tables determine $\Delta \mathrm{H}^{\circ} \mathrm{K}$ for the reaction below at 1300 K .

$$
\mathrm{Cu}_{\text {(sol) }}+\mathrm{F}_{2 \text { (gas) }}=\mathrm{CuF}_{2 \text { (liq) }} .
$$

3. a) Use the JANAF Tables to determine the amount of heat it would take to raise one gram mole of pure solid Cu at 500 K to gaseous Cu at 3000 K .
b)

Draw a calculation schematic for the above computation assuming the only data available are heat capacities and heats of transformations.
4. The atmospheric pressure on Pikes Peak on a particular day is 0.70 atm . What is the temperature of boiling water under this pressure? The heat of vaporization of water is 40,680 J/gmole.
5. At what pressure would the melting temperature of Pb be reduced by 1 one Kelvin degree to 599 K . The densities of $\mathrm{Pb}_{(\mathrm{s})}$ and $\mathrm{Pb}_{(\mathrm{l})}$ are 10.5 and $10.3 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. The heat of fusion for Pb is $4794 \mathrm{~J} /$ gmole and its molecular weight is 207.
6. At Base Camp on your ascent of Mt. Everest you note that the water for your tea boils at boils at $90^{\circ} \mathrm{C}$. What is the barometric pressure? The heat of vaporization of water is $40,680 \mathrm{~J} /$ gmole.

1. Write the first four of the "Big Six Equations" relating pressure, fugacity, mole fraction, and activity to Gibbs energy.
2. Ellingham Diagram: find
a) The pressure of O_{2} in equilibrium with V and $\mathrm{V}_{2} \mathrm{O}_{3}$ at $1400^{\circ} \mathrm{C}$. (Show work.)

Ans:
b) The $\mathrm{H} 2 / \mathrm{H}_{2} \mathrm{O}$ ratio in equilibrium with V and $\mathrm{V}_{2} \mathrm{O}_{3}$ at $1400^{\circ} \mathrm{C}$. (Show work.) Ans:
c) Which of the following pure oxides could be reduced to pure metal by C at $1400^{\circ} \mathrm{C}$? $\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{MnO}, \mathrm{SiO}_{2}, \mathrm{TiO}_{2}$.

Ans:
d) What is the melting point of Ca ? (Circle the location on the diagram.).
e) Estimate the $\Delta \mathrm{H}_{\text {Vaporization }}^{\mathrm{o}}$ of one mole of $\mathrm{Mg}_{(\mathrm{l})}$. (Show construction lines.)

Ans:
3. What is the volume of one mole of O_{2} at its two times its critical pressure and 1.2 times its critical temperature?
4. Set up a reaction extent problem for

$$
\mathrm{SO}_{2}+0.5 \mathrm{O}_{2}=\mathrm{SO}_{3}
$$

if there are initially 10 moles of $\mathrm{SO}_{2}, 5$ moles of O_{2}, and one mole of SO_{3}. The K_{EQ} is 1.19 and the total pressure is 2 atm .
5. Use the data given below for the liquid $\mathrm{Cu}-\mathrm{Sn}$ system at 1400 K to determine the enthalpy change when (assume all components start in the liquid state at 1400 K)

a) 10 moles of Cu are dissolved in a large quantity of $\mathrm{Cu}-\mathrm{Sn}$ alloy having a mole fraction of Sn of 0.8.
b) 2 moles of Sn and 8 moles of Cu are mixed at 1400 K
6. Show how to find the Gibb's Energy change and direction of the reaction

$$
\mathrm{Pb}_{(\mathrm{l})}+\mathrm{SO}_{2}+\mathrm{O}_{2}=\mathrm{PbSO}_{4(\mathrm{~s})}
$$

when the pressure of SO_{2} is 0.1 atm , the pressure of O_{2} is 2 atm , the activity of Pb is 0.1 relative to pure liquid Pb , and the PbSO_{4} is pure solid.

South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

MET 320

Closed Book and Notes

HQ 4
No Calculators

Dec 11, 2003
Data Sheet Provided MET 320
$\mathrm{R}=1.987 \mathrm{cal} / \mathrm{K} \cdot \mathrm{gmole}=8.31 \mathrm{~J} / \mathrm{K} \cdot \mathrm{gmole}$
$\mathcal{F}=23,060 \mathrm{cal} /$ volt•gram equivalent $=96,259 \mathrm{cal} /$ volt \bullet gram equivalent

1. Set up a reaction extent problem for

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2}=2 \mathrm{NH}_{3} \quad \mathrm{~K}_{\mathrm{EQ}}=1.2 \quad \mathrm{P}_{\mathrm{T}}=5 \mathrm{~atm}
$$

The table below shows the number of moles of each component initially.

Species	Moles initially		
NH_{3}	2		
H_{2}	1		
$\mathrm{~N}_{2}$	1		
total	4		

Use the attached Ellingham Diagram for the problems below.
(Show your work and submit the Ellingham Diagram.)
2. Show on the attached Ellingham Diagram
3. The pressure of O_{2} in equilibrium with Ca and CaO at $1000^{\circ} \mathrm{C}$
a) $\mathrm{The}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio in equilibrium with Si and SiO_{2} at $1000^{\circ} \mathrm{C}$
b) The value for Standard Gibbs Energy change for the formation of one mole of TiO_{2} at $1000{ }^{\circ} \mathrm{C}$.

Refer to the data for the Al-Au system at the end of the exam for Problems 3 and 4

4. Calculate the Gibbs energy change for the oxidation of liquid Al in a liquid $\mathrm{Al}-\mathrm{Au}$ alloy at a mole fraction of 0.1 with O_{2} at a pressure of $1 \times 10^{-12} \mathrm{ATM}$ to form pure, solid $\mathrm{Al}_{2} \mathrm{O}_{3}$ oxide. The temperature is $1338 \mathrm{~K}\left(1611^{\circ} \mathrm{C}\right)$.

$$
2 / 3 \mathrm{Al}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}=4 / 3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{G}^{0}=-711,620 \text { Joules } / \mathrm{gmole} \mathrm{O}_{2}
$$

5. How much heat would be expected from mixing
a) 2 moles of liquid Al at 1338 K and 8 moles of liquid Au at 1338 K ?
b) 1 mole of liquid Al at 1338 K and $1,000,000$ moles of liquid $\mathrm{Al}-\mathrm{Au}$ alloy of $\mathrm{X}_{\mathrm{Al}}=$ 0.7 at 1338 K ?
6. What voltage would be needed to form pure, liquid Mg from a cell at 800 K from pure, liquid MgCl_{2} The pressure of Cl_{2} is 0.1 atm?

$$
\mathrm{MgCl}_{2(\mathrm{l})}=\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{Mg}_{(\mathrm{l})} \Delta \mathrm{G}^{\mathrm{o}}=605,000-125.4 \mathrm{~T} \mathrm{~J} / \mathrm{gmole}
$$

7. Fill in the blank.

To obtain in a binary alloy	Given	Use Method or Equation
The Integral Molar Quantity	The Partial Molar Quantities	
	The Partial Molar Quantity \#2	
The Partial Molar Quantity \#1	The Integral Molar Quantity	
Both Partial Molar Quantities		

DATA from Hultgren, et al. All G and H data are in calories. All S data are in calories/K

TABLE 3

Integral Quantities for Liquid Alloys at $1338^{\circ} \mathrm{K}$

$$
(1-\mathrm{x}) \mathrm{A} 1_{(\ell)}+\mathrm{xA} u_{(\ell)}=\mathrm{Al} 1_{1-\mathrm{x}} \mathrm{~A} u_{\mathrm{x}(\ell)}
$$

x_{Au}	$\Delta \mathrm{G}$	$\Delta \mathrm{H}$	$\Delta \mathrm{S}$	$\Delta \mathrm{G}^{\mathrm{XS}}$	$\Delta \mathrm{S}^{\mathrm{XS}}$
0.1	-3145	-1845	0.972	-2281	0.326
0.2	-5605	-3869	1.297	-4274	0.303
0.3	-7586	-5795	1.339	-5962	0.124
0.4	-9066	-7264	1.347	-7277	0.010
0.5	-9875	-8070	1.350	-8032	-0.028
	(± 200)	(± 600)	$(\pm .5)$	(± 200)	$(\pm .5)$
0.6	-9817	-8040	1.328	-8027	-0.010
0.7	-8830	-7147	1.258	-7205	0.044
0.8	-6878	-5410	1.097	-5547	0.103
0.9	-3950	-2916	0.773	-3085	0.127

Partial Molar Quantities for Liquid Alloys at $1338^{\circ} \mathrm{K}$

Al Component		$\mathrm{Al}_{(\ell)}=\mathrm{Al}$（in alloy）${ }_{(\ell)}$					
${ }^{\mathrm{x}} \mathrm{Al}$	${ }^{\text {a }}$ Al	${ }^{\gamma}$ Al	$\Delta \overline{\mathrm{G}}_{\mathrm{Al}}$	$\Delta \overline{\mathrm{G}}^{\mathrm{xS}}$	${ }^{\triangle} \mathrm{H}_{\mathrm{Al}}$	$\bar{S}^{\text {Al }}$	${ }^{\triangle \bar{S}^{\text {x }}} \mathrm{Al}$
1.0	1．000	1.000	0	0	0	0.000	0.000
0.9	0.853	0.948	－ 422	－ 142	130	0． 412	0.203
0.8	0． 642	0.803	－ 1177	－ 584	197	1． 027	0.584
0.7	0.413	0.590	－ 2352	－ 1404	－ 597	1.312	0.603
0.6	0.195	0.325	－ 4347	－ 2989	－ 2603	1． 303	0.288
0.5	0.051	0.103	－ 7893	－ 6050	－ 6047	1．379	0.002
	（土．002）	（土．004）	（ $\pm 150)$	（ $\pm 150)$	（ ± 500 ）	（土．5）	（土．5）
0.4	0.0077	0.019	－12937	－10501	－10838	1． 569	－0．252
0.3	0.00077	0.0026	－19048	－15847	－16371	2． 001	－0．392
0.2	0.00005	0.00023	－26519	－22240	－22583	2． 942	－0．256
0.1	0.000002	0.00002	－34456	－28334	－27304	5． 346	0.770
0.0	0． 00000	0.0000035	－$\quad \infty$	－33400	－30724	∞	2． 000

Au Component $\quad \mathrm{Au}_{(\ell)}=\mathrm{Au}$（in alloy）${ }_{(\ell)}$

${ }^{\mathrm{x}} \mathrm{Au}$－	${ }^{\mathrm{a}} \mathrm{Au}$	${ }^{\gamma} \mathrm{Au}$	$\triangle \overline{\mathrm{G}}^{\text {Au }}$	$\begin{array}{r} \Delta \overline{\mathrm{G}}^{\mathrm{XS}} \\ \mathrm{Au} \end{array}$	$\triangle \overline{\mathrm{H}}_{\mathrm{Au}}$	$\bar{S}^{\text {S }}$	$\triangle^{-\bar{S}_{\text {AS }}}$
0.0	0.00000	0.00011	－$\quad \infty$	－24205	－16665	∞	5.635
0.1	0.00003	0.00030	－27657	－21535	－19624	6． 004	1． 28
0． 2	0.00016	0． 00078	－23314	－19035	－20135	2． 376	－0．822
0.3	0．00058	0.0019	－19799	－16598	－17924	1． 402	－0．991
0.4	0． 0023	0． 0058	－16146	－13709	－14255	1． 413	－0．408
0． 5	0.0116	0． 0231	－11858	－10015	－10092	1．320	－0．058
	（土．001）	（土．002）	（ $\pm 250)$	（ $\pm 250)$	（ $\pm 700)$	（土．5）	（土．5）
0.6	0． 0545	0． 0908	－ 7736	－ 6378	－ 6174	1.167	0.152
0.7	0.188	0． 268	－ 4450	－ 3502	－ 3194	0.939	0.230
0． 8	0.477	0． 596	－ 1967	－ 1374	－ 1116	0.636	0.192
0.9	0.810	0． 900	－ 560	－ 280	－ 205	0． 265	0.056
1.0	1． 000	1． 000	0	0	0	0.000	0.000

SEE DATA SHEET AT END OF EXAM - NO CALCULATORS - CLOSED BOOK AND NOTES
If a problem seems to be in error, state the trouble, state an assumed correction, and proceed.

1. Refer to the attached $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ ternary phase diagram.
a) Characterize the bulk composition marked with an "A" at $2100^{\circ} \mathrm{C}$
b) What is the $1^{\text {st }}$ crystal to appear upon cooling for the bulk composition marked with a "B"?
c) What are the final 3 crystals for the bulk composition marked with a " B "?
2. Show on the attached Ellingham Diagram and write your answers below
a) The pressure of O_{2} in equilibrium with Si and SiO_{2} at $1200^{\circ} \mathrm{C}$.
b) The $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio in equilibrium with Si and SiO_{2} at $1200^{\circ} \mathrm{C}$.
c) $\mathrm{The} \mathrm{CO} / \mathrm{CO}_{2}$ ratio in equilibrium with Si and SiO_{2} at $1200^{\circ} \mathrm{C}$.
3. Use the JANAF Thermochemical Tables provided to determine the
a) Heat required at constant pressure to raise two gram moles of pure, solid Cu from 298 K to gaseous Cu at 3000 K .
b) The heat of reaction at 1500 K for $4 \mathrm{Cu}_{(\mathrm{S})}+\mathrm{TiO}_{2(\mathrm{~S}, \text { Rutile })}=2 \mathrm{Cu}_{2} \mathrm{O}_{(\mathrm{L})}+\mathrm{Ti}_{(\mathrm{S}, \text { Beta) }}$
c) The Standard Gibbs energy at 1000 K for the reaction $\mathrm{Cu}_{(\mathrm{S})}=\mathrm{Cu}_{(\mathrm{L})}$
4. Write the Big 6 equations and describe the standard state for each.
5. Find the adiabatic flame temperature for the combustion of $\mathrm{C}_{2} \mathrm{H}_{2}$ with air. The air and the $\mathrm{C}_{2} \mathrm{H}_{2}$ start at $298^{\circ} \mathrm{K}$. Use the data provided below only.

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2.5 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Species	Heats of Formation (calories $/ \mathrm{g}$ mole at $\left.298^{\circ} \mathrm{K}\right)$	Cp $\left(\mathrm{cal} /\right.$ gmole $\left.{ }^{\circ} \mathrm{K}\right)$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	54,190	19.0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$-57,800$	10.5
$\mathrm{CO}_{2}(\mathrm{~g})$	$-94,000$	13.6
$\mathrm{O}_{2}(\mathrm{~g})$		8.6
$\mathrm{~N}_{2}(\mathrm{~g})$		7.0

6. What voltage would be required to produce $\mathrm{W}_{(\mathrm{S})}$ from $\mathrm{WCl}_{5(\mathrm{~L})}$ at 600 K ? (Use JANAF Thermochemical Table for data.)
7. What would be the equilibrium pressure of SO_{3} gas in a system at 1000 K and total pressure od 10 atm if the system initially contained 3 moles of SO_{2} gas and 1 mole of O_{2} gas. The predominant reaction is

$$
\mathrm{SO}_{2(\mathrm{G})}+0.5 \mathrm{O}_{2(\mathrm{G})}=\mathrm{SO}_{3(\mathrm{G})} \quad \mathrm{K}_{\mathrm{EQ}}=1.88
$$

8. Show how to find the activity and the activity coefficient of Cu in a liquid $\mathrm{Au}-\mathrm{Cu}$ alloy at 1550 K that is 30 atomic percent Cu from the following data:

Gibbs energy of Mixing for the Liquid Au-Cu System at 1550 K

$\mathbf{X}_{\mathbf{C u}}$	
	$\mathbf{G}^{\mathbf{M}}$
0	0
0.1	
0.1519	
0.3	
0.2461	
0.4	-3089
0.5	-3453
0.6	-3572
0.7	-3453
0.8	-3089
0.9	-2461
1	-1519
	0

Gibbs Energy of Mixing for theLiquid Au-Cu System at 1550 K

South Dakota School of Mines and Technology
 Department of Materials Metallurgical Engineering

MET 320
HQ 3
Dec. 1, 2005
SEE DATA SHEET AT END OF EXAM - NO CALCULATORS - CLOSED BOOK AND NOTES
If a problem seems to be in error, state the trouble, state an assumed correction, and proceed.

1. Write the Big 6 Equations.
$\mu_{i}=\mu_{i}^{o}+R T \ln p_{i}$
$\mu_{i}=\mu_{i}^{o}+R T \ln \left(p_{i} \gamma_{i}\right)--o r \ln \left(f_{i}\right)$
$\mu_{i}=\mu_{i}^{o}+R T \ln x_{i}$
$\mu_{i}=\mu_{i}^{o}+R T \ln \left(x_{i} \gamma_{i}\right)--o r \ln \left(a_{i}\right)$
$\mu_{i}=\mu_{i}^{o}+R T \ln [i]_{i}$
$\mu_{i}=\mu_{i}^{o}+R T \ln \left([i]_{i} \gamma_{i}\right)--$ or $\ln \left(a_{i}\right)$
2. Short answer:
a) What is the difference between $\Delta \mathrm{G}$ and $\Delta \mathrm{G}^{\circ}$?

The super script " 0 " means "when every reactant and product is in its standard state"
b) What is the relative partial molar heat of mixing for an Ideal solution? Zero
c) What is the name of the ThermoCalc program module that lists values of $\Delta \mathrm{S}^{\circ}$, $\Delta \mathrm{H}^{\circ}$, and $\Delta \mathrm{G}^{\circ}$ for an entered reaction at user-defined temperature intervals?

TAB

3. Estimate the volume of 100 moles of NH_{3} at $445 \mathrm{~K}(1.1 * T$ critical $)$ and 223 atm (2*Pcritical)?
See Figure 8.4 Law of Corresponding States: $\mathrm{z}=0.4$
$V=\frac{z n R T}{P}=\frac{0.4 * 100 * 0.08205 * 445}{223}$ Liters
Actual Solution: $6.41 \mathcal{L}$
4. Estimate the temperature required to raise the vapor pressure of water to 100 mmHg if it is known that the vapor pressure of water vapor above water at $22^{\circ} \mathrm{C}$ is 20 mmHg .

Clasius-Clapeyron Eq.

$$
\begin{aligned}
& \ln \left[\frac{p_{2}}{p_{1}}\right]=-\frac{\Delta H_{\text {Vap }}^{o}}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right] \\
& \ln \left[\frac{100}{20}\right]=-\frac{4320}{8.31}\left[\frac{1}{\left(273+T_{2}\right)}-\frac{1}{(273+22)}\right]
\end{aligned}
$$

T_{2} is in ${ }^{\circ} \mathrm{C} \quad$ Actual Solution: $51.6{ }^{\circ} \mathrm{C}$
5. Cu in a liquid $\mathrm{Ag}-\mathrm{Cu}$ solution having a composition of $\mathrm{x}_{\mathrm{Cu}}=0.1$ at a temperature of 1423 K reacts with half a mole of O_{2} at 12 atm to form pure, solid $\mathrm{Cu}_{2} \mathrm{O}$. Show how to calculate the Gibbs energy change for this process.
Data: $2 \mathrm{Cu}_{(\mathrm{l})}+0.5 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s}) \quad \Delta \mathrm{G}^{\circ}=-195,000-7.12 \mathrm{~T} \ln \mathrm{~T}+143 \mathrm{~T} \mathrm{~J} / \mathrm{gmole}$

$$
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln (\mathrm{Q})
$$

$$
\mathrm{Q}=\frac{a_{\mathrm{Cu}} \mathrm{O}}{a_{\mathrm{Cu}}^{2} p_{O_{2}}^{0.5}}=\frac{1}{0.26_{C u}^{2} 12_{O_{2}}^{0.5}} \quad \text { Actual Solution: } \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}
$$

\mathbf{T}, K	$\Delta \mathbf{G}^{\circ}, \mathrm{J} / \mathrm{gfw}$	\mathbf{Q}	$\Delta \mathbf{G}, \mathrm{J} / \mathrm{gfw}$
1423	$-65,073$	4.27	$-47,906$

6. Initially there are 5 moles of $\mathrm{SO}_{2}, 3$ moles of O_{2}, and 1 mole of SO_{3} in a reactor kept at a constant pressure or 2 atm and constant temperature. Setup the calculation to determine the equilibrium number of moles of each gas. All the species are gaseous.
7. $2 \mathrm{SO}_{2}+\mathrm{O}_{2}=2 \mathrm{SO}_{3} \quad \mathrm{~K}_{\mathrm{EQ}}=1.8$
8. Let $x=$ moles of O_{2} reacted
9. Mole balance to Equilibrium

\mathbf{i}	Moles		
\mathbf{i}	$\mathbf{N}_{\text {init }}$	$\mathbf{N}_{\text {Final }}$	$\mathbf{p}_{\mathbf{i}}$
SO_{2}	5	$5-2 \mathrm{x}$	$\frac{5-2 x}{9-x} 2$
O_{2}	3	$3-\mathrm{x}$	$\frac{3-x}{9-x} 2$
SO_{3}	1	$1+2 \mathrm{x}$	$\frac{1+2 x}{9-x} 2$
Total	9	$9-\mathrm{x}$	2

4. $\mathrm{K}_{\mathrm{EQ}}=\frac{\left[\frac{1+2 x}{9-x} 2\right]^{2}}{\left[\frac{5-2 x}{9-x} 2\right]^{2}\left[\frac{3-x}{9-x} 2\right]}=\frac{[1+2 x]^{2}}{[5-2 x]^{2}\left[\frac{3-x}{9-x} 2\right]}$
5. Solve for x . Note $-0.5 \leq x \leq 2.5$. Otherwise a mole value becomes negative.

Actual Solution: by Microsoft Excel Goal Seek ${ }^{\circledR}$

	x	
	Q	
	0.965	1.800
\mathbf{i}	Final	\mathbf{p}_{i}
SO_{2}	$\mathbf{3 . 0 6 9}$	$\mathbf{0 . 7 6 4}$
O_{2}	2.035	0.506
SO_{3}	2.931	0.730
Total	8.035	2.000

DATA:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}=\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \Delta \mathrm{H}^{\circ}=6,028 \mathrm{~J} / \text { gmole } \\
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}=\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}^{\circ}=43,267 \mathrm{~J} / \text { gmole } \\
2 \mathrm{Cu}_{(\mathrm{l})}+0.5 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s}) & \Delta \mathrm{G}^{\circ}=-195,000-7.12 \mathrm{~T} \ln \mathrm{~T}+143 \mathrm{~T} \mathrm{~J} / \mathrm{gmole} \\
\mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})=\mathrm{Cu}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{G}^{\circ}=13,580-9.0 \mathrm{~T} \mathrm{~J} / \text { gmole }
\end{array}
$$

Activity data for liquid
Ag-Cu Alloys at 1423 K

X_{Cu}	a Cu
0.0	0.000
0.1	0.260
0.2	0.422
0.3	0.535
0.4	0.616
0.5	0.679
0.6	0.731
0.7	0.782
0.8	0.841
0.9	0.912
1.0	1.000

Table 8.1 The critical states, van der Waals constants, and values of Z at the critical points for several gases

Gas	$T_{\mathrm{c}}, \mathrm{K}$	P_{c}, atm	$V_{\mathrm{c},}, \mathrm{cm}^{3} /$ mole	$a, \frac{{ }^{12} \text {-atm }}{\text { mole }^{2}}$	b, liters $/ \mathrm{mole}$	Z_{a}
He	5.3	2.26	57.6	0.0341	0.0237	0.299
H_{2}	33.3	12.8	65.0	0.2461	0.0267	0.304
$\mathrm{~N}_{2}$	126.1	33.5	90.0	1.39	0.0391	0.292
CO	134.0	35.0	90.0	1.49	0.0399	0.295
O_{2}	153.4	49.7	74.4	1.36	0.0318	0.293
CO_{2}	304.2	73.0	95.7	3.59	0.0427	0.280
NH_{3}	405.6	111.5	72.4	4.17	0.0371	0.243
$\mathrm{H}_{2} \mathrm{O}$	647.2	217.7	45.0	5.46	0.0305	0.184

Figure 8.4 The variations of the compressibility factors of several gases with reduced pressure at several reduced temperatures

South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

HQ 3
No Calculators

Dec 1, 2006
Closed Book and Notes
$\mathrm{R}=1.987 \mathrm{cal} / \mathrm{K} \cdot \mathrm{gmole}=8.31 \mathrm{~J} / \mathrm{K} \cdot$ gmole
$F=23,060 \mathrm{cal} /$ volt•gram equivalent $=96,259 \mathrm{cal} /$ volt \bullet gram equivalent
5. Dry ice (solid CO_{2}) is so named because it never melts at atmospheric pressure. Its vapor pressure is above 1 atm at its melting point so it is long sublimated before melting. The vapor pressure of dry ice is 5.11 atm at its melting point $\left(-56.6^{\circ} \mathrm{C}\right.$, 216.4 K) and drops to 1 atm at $\left(-78.5^{\circ} \mathrm{C}, 194.5 \mathrm{~K}\right)$. Determine the heat of sublimation for dry ice from these data.

Use the attached Ellingham Diagram for the problems below.

(Show your work and submit the Ellingham Diagram.)
6. Show on the attached Ellingham Diagram
f) The pressure of O_{2} in equilibrium with Ti and TiO_{2} at $800^{\circ} \mathrm{C}$
g) The $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio in equilibrium with Ti and TiO_{2} at $800^{\circ} \mathrm{C}$
h) The $\mathrm{CO} / \mathrm{CO}_{2}$ ratio in equilibrium with Ti and TiO_{2} at $800^{\circ} \mathrm{C}$
7. Set up a reaction extent problem for

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2}=2 \mathrm{NH}_{3} \quad \mathrm{~K}_{\mathrm{EQ}}=1.2 \quad \mathrm{P}_{\mathrm{T}}=5 \mathrm{~atm}
$$

South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

MET 320
(Data from the text and Hultgren were provided)

HQ 3
Dec 6, 2007
The table below shows the number of moles

1. a) Referring to Table 8.1, cite the gases that exhibit a two phase gas-liquid behavior at room temperature (298 K).
of each component initially.

Species	Initial Moles		

b) Telemetry from the Space Shuttle oxygen tank shows $\mathrm{T}=184 \mathrm{~K}$ and $\mathrm{P}=149$ atm. How many gram moles of oxygen remain in the 30 -Liter tank?

NH_{3}	0		
H_{2}	10		
$\mathrm{~N}_{2}$	4		
total	2		

2. Show on the attached Ellingham Diagram The pressure of O_{2} in equilibrium with Si and SiO_{2} at $1300^{\circ} \mathrm{C}$

Refer to the data for
the Al-Au system at the end of the exam for Problems 3 and 4
a) The $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio in equilibrium with Si and SiO_{2} at $1300^{\circ} \mathrm{C}$
8. What is the volume of one gmole of CO_{2} at 304 K and 219 atm , which is three times its critical pressure of 73 atm ?
9. a) Calculate the Gibbs energy change for the oxidation of pure, liquid Al with O_{2} at a pressure of
$1 \times 10^{-12} \mathrm{~atm}$ to form pure, solid $\mathrm{Al}_{2} \mathrm{O}_{3}$ oxide. The temperature is $1338 \mathrm{~K}\left(1611^{\circ} \mathrm{C}\right)$.

$$
\begin{equation*}
2 / 3 \mathrm{Al}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}=4 / 3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{G}^{\circ}{ }_{1338 \mathrm{~K}}=-711,620 \text { Joules } / \text { gmole } \mathrm{O}_{2} \tag{s}
\end{equation*}
$$

b) Which direction does the reaction proceed if the Gibbs energy change is less than 0 ?
b) The $\mathrm{CO} / \mathrm{CO}_{2}$ ratio in equilibrium with Si and SiO_{2} at $1300^{\circ} \mathrm{C}$
c) Estimate the for one gram mole of Mg
i) Heat of Fusion
ii) Heat of Vaporization.
3. Solve for the equilibrium moles of HI at 500 K and total pressure of 5 atm .

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})=2 \mathrm{HI}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}=(\text { see text })
$$

The table below shows the number of moles of each component initially.

Species	Initial Moles		
HI	3		
H_{2}	10		
I_{2}	4		
total			

4. Calculate the Gibbs energy change for the oxidation of pure, liquid Mg with Cl_{2} at a pressure of 1×10^{-8} atm to form pure, solid MgCl_{2} oxide at 1200 K . Use the data from Table $\mathrm{A}-1$ in the text.
5. What is the $\Delta \mathrm{H}$ of for the following scenarios? (Use the handouts from class for data.)
a) Three moles of liquid Al at 1273 K mix with 7 moles of liquid Ag at 1273 K .
b) Two moles of liquid Al at 1273 mix with a million moles of Ag - Al alloy at 1273 K with a mole fraction of 0.3 Al .
