Cantilevered Beams

For a load on a cantilevered beam with modules E and moment of inertia I,

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} y}{d x^{2}}\right)=q \tag{1}
\end{equation*}
$$

If E, I, and q are functions of distance along the beam, then Eq. (1) may be written

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left(f(x) \frac{d^{2} y}{d x^{2}}\right)=q(x) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=E(x) I(x) \tag{3}
\end{equation*}
$$

Expanding Eq. (2) gives

$$
\begin{equation*}
f^{\prime \prime}(x) \frac{d^{2} y}{d x^{2}}+2 f^{\prime}(x) \frac{d^{3} y}{d x^{3}}+f(x) \frac{d^{4} y}{d x^{4}}=q(x) \tag{4}
\end{equation*}
$$

Solving for the fourth derivative gives

$$
\begin{equation*}
\frac{d^{4} y}{d x^{4}}=\left(q(x)-f^{\prime \prime}(x) \frac{d^{2} y}{d x^{2}}-2 f^{\prime}(x) \frac{d^{3} y}{d x^{3}}\right) / f(x) \tag{5}
\end{equation*}
$$

For a Cantilevered beam, the moment and shear are zero at the free end ($\mathrm{x}=\mathrm{L}$). The shear Q and the moment M are given by

$$
\begin{equation*}
Q=f(x) \frac{d^{3} y}{d x^{3}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
M=f(x) \frac{d^{2} y}{d x^{2}} \tag{7}
\end{equation*}
$$

The deflection and slope of the beam are the values y and the first derivative $y^{\prime}(x)$.
Summarizing, Eq. (5) is the $4^{\text {th }}$ derivative $y^{\prime \prime \prime \prime \prime}$ that when integrated

- one time is $\mathrm{y}^{\prime \prime \prime}=\mathrm{Q} / \mathrm{f}(\mathrm{x})$
- two times is $y^{\prime \prime}=M / f(x)$
- three times is $\mathrm{y}^{\prime}=$ slope
- four times is $\mathrm{y}=$ deflection.

The four boundary conditions for the above integrations are as follows:

- $Q=0$ at $x=L$
- $\mathrm{M}=0$ at $\mathrm{x}=\mathrm{L}$
- $y^{\prime}=0$ at $x=0$
- $y=0$ at $x=0$

The initial value array " l " will be entered in an order consistent with the derivative array " D " as follows: $I=\left[y_{0}, y^{\prime}{ }_{0}, y^{\prime \prime \prime}{ }_{o}, y^{\prime \prime \prime}{ }_{0}\right]$ as and $D(x, y)=\left[y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, y^{\prime \prime \prime \prime}\right]$ both as column arrays. The value of $y^{\prime \prime \prime \prime}$ is known to be $\operatorname{Load}(\mathrm{x}) /(\mathrm{E}(\mathrm{x}) I(\mathrm{x}))$. The problem is complicated by the unknown values for $\mathrm{y}^{\prime \prime}{ }_{\circ}$ and $\mathrm{y}^{\prime \prime \prime}{ }^{\prime}$. The sbval function versomes this problem by iteratively solving for them. The argument call for the sbval function according to direct quote from MathCad is as follows:
sbval($\mathbf{v}, \mathbf{x 1}, \mathbf{x 2}, \mathbf{D}$, load, score) returns a set of initial conditions for the boundary value problem specified by the derivatives in D and guess values in v on the interval $[\mathrm{x} 1, \mathrm{x} 2$]. Parameter load contains both known initial conditions and guess values from v , and score measures solution discrepancy at $\times 2$.

Solutions

Solutions for a cantilevered beam are presented below for two cases:
a) Constant IE and load q
b) Variable $\mathrm{I}(\mathrm{x}) \mathrm{E}(\mathrm{x})$ and load $\mathrm{q}(\mathrm{x})$

Constant IE and load q

The MathCad solution for the unknown boundary conditions at $x=0$ for the second and third derivatives is shown below.

$$
\begin{aligned}
& \text { Cantilevered Beam Constant IE and load } \\
& I:=20 \quad \quad E:=3 \cdot 10^{7} \\
& f(x):=I \cdot E \\
& f 1(x):=0 \\
& f 2(x):=0 \\
& q(x):=-100(
\end{aligned}
$$

$$
\begin{aligned}
& \text { sol }:=\operatorname{sbval}(w, 0,10, D, \text { load, score }) \quad \quad I_{\text {s. }}:=\left(\begin{array}{c}
0 \\
0 \\
\operatorname{sol}_{0} \\
\text { sol }_{1}
\end{array}\right) \quad \text { Ans }:=\operatorname{rkfixed}(I, 0,10,100, D)
\end{aligned}
$$

Variable IE and load q

Cantilevered Beam Variable IE and load

$$
\begin{aligned}
& i_{0}:=200 \\
& i_{1}:=-1 \mathrm{C} \\
& e_{0}:=2 \cdot 10^{7} \quad e_{1}:=10^{6} \\
& I(x):=i_{0}+i_{1} \cdot x \\
& E(x):=e_{0}+e_{1} \cdot x \\
& f(x):=I(x) \cdot E(x) \\
& f 1(x):=i_{1} \cdot e_{0}+2 \cdot i_{1} \cdot e_{1} \cdot x \\
& f 2(x):=2 \cdot i_{1} \cdot e_{1} \\
& q(x):=-200-100 x \\
& D(x, z):=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
\frac{\left(q(x)-f 2(x) \cdot z_{2}-2 \cdot f 1(x) \cdot z_{3}\right)}{f(x)}
\end{array}\right] \\
& \operatorname{load}(x, w):=\left(\begin{array}{c}
0 \\
0 \\
w_{0} \\
w_{1}
\end{array}\right) \\
& w:=\binom{0}{0} \quad \operatorname{scor}(x, z):=\binom{z_{2}}{z_{3}} \\
& \text { sol }:=\operatorname{sbval}(w, 0,10, D, \text { load, score }) \quad \quad \text { sm }^{\prime}:=\left(\begin{array}{c}
0 \\
0 \\
\operatorname{sol}_{0} \\
\operatorname{sol}_{1}
\end{array}\right) \quad \text { Ans }:=\operatorname{rkfixed}(I, 0,10,100, D) \\
& x:=A n s^{\langle 0\rangle} \quad y:=A n s^{\left\langle{ }_{1}\right\rangle} \quad S_{A n}:=A n s^{\left\langle 2^{\rangle}\right\rangle} \quad M:=A n s^{\langle 3\rangle} \cdot f(x) \quad Q:=A n s^{\left\langle{ }_{4}\right\rangle} \cdot f(x)
\end{aligned}
$$

