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7  Root Finding 
 

Procedures used to solve equations can be divided into two classifications:  analytical and numerical.  
Analytical methods involve the explicit solution of equations in terms of the unknowns and constants in 

the equations.  For example, the solution to the quadratic equation cbxax 2 is 

   aacbb 2/42  .  This analytical solution is explicit and was obtained by the manipulation of the 
quadratic equation in terms of the unknown and constants.  On the other hand, numerical methods arrive 
at solutions through the manipulation of numbers.  This manipulation is usually in the form of successive 
guesses of the solution.  In these cases, numerical methods are designed so that each guess yields a result, 
which is closer to the root than the guess.  By using this result for the next guess, one may converge on 
the root.  The objective of this chapter is to present useful numerical methods that can be used to solve 
non-linear equations with one independent variable and to solve first-order simultaneous equations.  The 
importance of numerical methods has increased tremendously in recent years because of the widespread 
availability of digital computers. 
 
7.1 Non-linear Equations in one Unknown 
Linear equations in one unknown are equations in which the unknown is raised to the first power only.  
Also, logarithmic or trigonometric functions involving the unknown do not appear.  Therefore, linear 
equations in one unknown can be rearranged and solved easily.  Examples of linear equations in one 
unknown are 
  
 x 3x 2   (7.1) 
 
 10y 6  (7.2) 

 
Their solution is so trivial that they are ignored in the subject of numerical methods.  On the other hand, 
non-linear equations with one unknown are frequently difficult to solve analytically and in some cases 
can be solved only by numerical methods.  Examples of non-linear equations are 
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All numerical methods for solving non-linear equations begin with the equation in the form 
 
   0xf  (7.4) 

 
This is achieved by rearranging the equation so that all of the terms appear on the left side.  The objective 
of numerical methods for solving all non-linear equations in one unknown is then the same.  It is to find 
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the values of x which make the function of x equal to zero.  When more than one root exists for the 
equation, the value of the function will equal zero at more than one value of x.  This is illustrated in 
Figure 1.   
 
Unlike rigorous analytical solutions which result in exact values of the root, numerical methods result in 
an approximation of the root.  The accuracy of the approximation may be set at any desired level, but 
should be established by the accuracy needed in the solution.  This depends upon the nature and use of the 
mathematical model being solved.  Since numerical methods consist of repetitive approximations of the 
root which are increasingly accurate near the root, the repetitive procedure is terminated when the 
difference in successive approximations is less than the established error criterion. 
 
 

  
 Figure 1-Behavior of a Typical Non-linear Function. 
 
 
Trial and Error:   The most easily understood method of finding a root, Rx , is by the trial and error 

method.  The method consists of evaluating f(x) at the regular values of ,........,, 321 xxx  as shown in 

Figure 2, until the value of f(x) changes sign.  In Figure 2 this occurs between 2x  and 3x .  The interval 

between 2x  and 3x  is then divided into ten equal intervals and the procedure is repeated.  The accuracy 

in the value of Rx  determined by this method depends on the size of the last increment.  Normally, a 

difference of 610 would be considered acceptable.  However, if 13102  xxR  that error criterion would 

be much too large.  On the other hand, if 42101.4 xxR  , such accuracy would most likely be ridiculously 
stringent.  Therefore, dividing by the value of x near the root usually normalizes the error criterion.  Thus, 

a common error criterion is   6
121 10/  xxx where 1x  and 2x  are the values of x which give values 

of f (x) of opposite sign.  That is, the accuracy in Rx  is one-millionth the value of Rx . 

 
The trial and error method is very reliable in that it nearly always finds a root.  However, it is not used 
extensively because it is very inefficient and requires more computer time than the following methods. 
 
Interval Halving (Bisection)  The interval halving method is the same as the trial and error method except 
that the interval is divided into two rather than ten increments.  This change yields higher efficiency, but 
is still not much better than the trial and error method.  The interval halving method is used to solve the 
problem in Example 7a. 
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 Figure 2-Trial and Error Method. 
 
 
Secant Method  Figure 3 illustrates the secant method.  The first step of the method is to evaluate f(x) at 
two arbitrarily selected values of x denoted in Figure 3a as 1x  and 2x .  A straight line through the two 

points having the coordinates   11, xfx  and   22 , xfx  is used to determine an estimate of the root.  

The estimate is the value of x where the straight line intersects the x-axis.  This estimate is denoted as 3x .  

If 3x  is nearly the same as 2x , the function f(x) is very steep near 2x  and the root is very close to 3x .  

However, it is more likely that 3x  will not be close to 2x .  In that case, the procedure is repeated using the 

coordinates   22 , xfx  and   33 , xfx  as shown in Figure 3b to obtain a new estimate 4x .  This 

procedure is repeated until the change in x becomes acceptably small.  As before, a reasonable error 

criterion is   6
1 10/ 
  nnn xxx . 

 
 
 
Example 7a  
 
The mathematical model for the rate of heat loss in BTU’s per minute for a hot steel ingot is 
 
 48 TQ 4.53T 1.14 *10 3417    (7.5) 

 
where T is in degrees Fahrenheit.  What is the temperature of the ingot when the heat loss rate is 12,000 
BTU’s per minute?  The required accuracy is one Fahrenheit degree. 
  
Substitution of 12,000 for Q and rearranging gives 

  

      8 4f T 4.53T 1.14X10 T 15, 417 0  
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Solving by the interval halving method with an initial value of zero for T and an initial step size of 512 
gives the following results.  The step size was selected to avoid fractional temperatures.  That is, it can be 
halved without incurring fractions.  Such a consideration is not a necessary part of the interval halving 
method. 
 T f (T) Remarks 
 0 -15,417 - 
 512 -12,314 - 
 1024 + 1,756 R512 T 1024   

 768 -7,972 R768 T 1024   

 896 -4,011 R896 T 1024   

 960 -1,386 R960 T 1024   

 992 + 116 R960 T 992   

 976 - 651 R976 T 992   

 984 - 272 R984 T 992   

 988 - 79 R988 T 992   

 990 + 18 R988 T 990   

 RT 989 1   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 Figure 3 Secant Method: a) First Approximation 

b) Second Approximation 
 

(b) 

(a) 
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The general equation for the new estimate of the root, 1nx , is derived using Figure 4.  Since the small, 

cross-hatched triangle is similar to the large speckled triangle, 
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Rearranging gives 
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 Figure 4-Derivation of the Secant Method Equation. 
 
 
The secant method will normally converge on the root very rapidly.  However, under some circumstances 
the method may fail to locate a root.  For example, if the two arbitrarily selected points 1x  and 2x  define 
a straight line of no slope the first estimate of the root will be undefined.  In such a case, two new starting 
points must be used. 
 
 
 
Example 7b  
 
Solve the problem in Example 7a by the secant method.  As before 
 
   8 4f T 4.53T 1.14x10 T 15, 417 0     (7.8) 

 
If the initial guesses are 5001 T  and 6002 T , the approximation resulting from the use of Eq. (7.2) is 
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  
   

 
  

  
0

n 1 3

11, 222 600 500
T 600 T 1622.1 F

11, 222 12, 439
 (7.10) 

 
The large difference between 2T  and 3T  makes it clear that additional iterations are required.  Using 2T  

and 3T , in Eq. (7.7) for 1nT  and nT  gives 

 
 4T 762.14 °F (7.11) 

 
Continuing this procedure until the difference between the approximations is less than one °F gives 
 
 0

5T 863.74 F  

 0
6T 1040.88 F  

 0
7T 980.32 F  

 0
8T 988.98 F  

 0
9T 989.63 F  

 
Therefore, the answer is 989.62 °F. 
 
Newton’s Method: Since Newton is the Father of Calculus, one might correctly expect that Newton’s 
method involves the use of calculus.  Specifically, calculus is used to determine the slope of a tangent to 
the function f(x) at some estimate of the root, xn.  As shown in Figure 5, the intersection of this tangent 
with the x-axis yields a new approximation of the root, xn. 
  
The equation used to calculate xn+1 is easily derived by equating the first derivative of the function of xn to 
the slope of the tangent. 
 

    n'
n

n n 1

f x
f x

x x 



 (7.12) 

 
Solving for n 1x   gives 
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n
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f x
x x

f x    (7.13) 

 
This equation is used repetitively until the difference between xn and xn+1 is small enough to satisfy a 
predetermined error criterion. 
   
Like the secant method, Newton’s method is more efficient than the trial and error method and the 
interval-halving method.  Additionally, it is usually more efficient than the secant method, because it 
requires fewer calculations per approximation.  However, Newton’s method can oscillate about a 
minimum or maximum which is isolated from the root.  Figure 6 illustrates such oscillation.  Functions 
like the one shown in Figure 6 can also lead to oscillation when using the secant method.  In some cases, 
the shape of the function is such that successive approximations diverge.  That is, they oscillate about 
some position, but the distance of the approximations from this position continually increase.  Selecting 
new starting approximations of the root can usually eliminate oscillation and divergence.  
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 Figure 7.5-Newton’s Method 
 
 
 
Example 7c  
 
Find the square root of ten by Newton’s method.  The answer must be accurate to within four decimal 
places. 
  
If the square root is x, then 
 

 .102 x  (7.14) 
 
 

  
 Figure 6-Newton’s Method Oscillation 
 
 
Therefore, this problem may be formulated as 
 

   0102  xxf  (7.15) 
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According to Newton’s method 
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which may be simplified to 
 

 
n

n
n x

x
x

5

21   (7.17) 

 
If the first approximation of the root is ten, then 
 

 2

10 5
X 5.5000

2 10
    (7.18) 

 3

5.5000 5
X 3.6591

2 5.5000
    

 4

3.6591 5
X 3.1960

2 3.6591
    

 5

3.1960 5
X 3.1625

2 3.1960
    

 6

3.1625 5
X 3.1623

2 3.1625
    

 7

3.1623 5
X 3.1623

2 3.1623
    

 
Therefore, 
 

 10 3.1623 . 
 
It is interesting to note that this procedure is used by the handheld calculators. 
 
False Position:  The method of false position is probably the most common numerical method used for 
solving difficult non-linear equations in one unknown by the digital computer.  This is because the 
method of false position combines the reliability of the trial and error method with the efficiency of more 
sophisticated methods.  Like the trial and error method, the method of false position requires stepping 
along the x-axis until a sign change in f(x) is found.  In Figure 7 this occurs between x1 and x2.  When the 
root is so bracketed, the point   11, xfx  becomes a pivot point denoted by P through which a number of 
lines will pass.  Each additional line is used to make a better approximation of the root.  The first line is 
drawn to   22 , xfx , and the root is approximated to be where this line crosses the x-axis.  In the figure 
this intersection is at x3.  The approximation in the root is improved by drawing a second line through 

  33 , xfx  and finding its intersection with the x-axis.  This process is continued until the change in 

successive approximations of x falls below the prescribed error criterion.   
  
The equation for calculating the new approximation xn+1 from point P and the current approximation is 
developed using Figure 8.  Since the two triangles in the figure are similar, 
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 (7.19) 

 
Rearranging gives 
 

 
   
   Pn

PnnP
n xfxf

xfxxfx
x




1  (7.20) 

 

 
Figure 7-False Position Method 
 
 

 
Figure 8-Derivation of the False Position Method Equation. 
 
 

 
Figure 9-Changing the Pivot. 
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In some cases the shape of the curve f(x) versus x will be such that  1nxf  will be the same sign as 

 Pxf .  This is shown in Figure 9.  When this occurs, the pivot point must be relocated at   nn xfx , .  

Otherwise, the method degenerates into the secant method. 
 
 
 
Example 7d  
 
A steel ring is to be shrink fitted onto a steel shaft having a 3.010 inch diameter.  The inside diameter of 
the steel ring is 3.000 inches.  To what temperature must the ring be heated to fit over the shaft if the 
ring’s diameter is given by 
 

  6 9 2 12 3D 3.000 1 0.81 10 T 0.72 10 T 0.31 10 T          (7.21) 

 
where T is the temperature in °F?  Use the method of false position.  The answer must be known to within 
one Fahrenheit degree.   
  
Substitution of 3.010 for D in the above equation and rearranging gives 
 

 6 9 2 12 33.010
f(T) 1 1.02 10 T 1.74 10 T 0.39 10 T 0

3.000
            (7.22) 

 
Beginning at zero degrees Fahrenheit and stepping along the T-axis in 300 °F steps gives the following 
results: 
 
  T f (T) 
  0 33.33 10  
  300 32.86 10  
  600 32.01 10  
  900 37.22 10  
  1200 31.07 10   
 

Therefore, the root is between 900 and 1200.  If (900, 37.22 10 ) is made the pivot, and (1200, 
31007.1  ) is nT , Eq. (7.20) gives 

 

 
   
   

3 4

2 3 4

(900) 1.07 10 (1200) 7.22 10
T

1.07 10 7.22 10

 

 

   


   
 (7.23) 

 
 2T = 1020.87 

 

Evaluating f(T) at 2T  gives 51037.6   which has the same sign as the pivot.  Therefore, the pivot must 

be changed to (1200, 31007.1  ).  Eq. (7.20) gives the next approximation as 
 



  7 - 11 

MATH 373   Stanley M. Howard 2000 

 
     

   35

35

3 1007.11037.6

1007.187.10201037.61200







T  (7.24) 

 
 3T = 1030.96 

 

Evaluating f(T) at 3T  gives 61098.4   which has the opposite sign as the pivot.  Therefore, the existing 

pivot may be used for the next approximation. 
 

 
     

   36

36

4 1007.11098.4

1007.196.10301098.41200







T   (7.25) 

 
 4T = 1031.7 

 
Since 4T  is within one Fahrenheit degree of 3T , the answer is 1031.7 °F.  If additional iterations are made 

to improve the accuracy of the answer, one will find T= 1031.74 °F. 
 
Summary Many non-linear equations in one unknown have two or more roots.  Although an equation may 
have both real and imaginary roots, the imaginary roots are usually of no engineering significance.  The 
numerical methods presented in the chapter may be used to determine one root at a time.  If only one root 
has any engineering significance, special care must be taken to assure that the root determined is the root 
of interest.  For example, if the root signifies the time required to achieve thorough mixing in a tank, then 
only the positive root has any significance.  Digital computer programs can be written so that insignificant 
roots are avoided.  This is usually done by checking the root to see if it is significant.  If it is not, new 
starting points for the numerical method are specified. 
 
One-Point Iteration Method 
 
The one-point iteration method in its simplest form for a single equation rearranges the function  
 

f(x) = 0  (7.26) 
 
with unknown roots in such a way that 
 
 x = g(x). (7.27) 
 
The root, the value that solves Eq.(7.27), is sought by assuming a starting value of x to be used in g(x) 
and computing a successive value for x such that 
 
 xN+1 = g(xN). (7.28) 
 
This iterative procedure continues until convergence is reached, which is achieved if |g’(x)| < 1.  A 
graphical view of this procedure is shown in Figure 10. 
 
7.2 Simultaneous Linear Equations 
Two methods of solving a system of linear equations are presented in this section: Gauss-Jordan 
Elimination and Gauss-Seidel. 
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Gauss-Jordan Elimination: One of the most efficient numerical methods of solving simultaneous linear 
equations is by the Gauss-Jordan Elimination Procedure.  This procedure is most easily described by 
using it to solve a set of simultaneous linear equations such as 
 

 
 
Figure 10-The One-Point Iteration Method 
 
 
 x +3y +2z = 11 (7.29) 
 2x +y  = 6 (7.30) 
 -x +2y -2z = 9 (7.31) 
 
However, before using the Gauss-Jordan Elimination Procedure it is helpful to find the solution 
by inspection.  Inspection shows that the addition of Eqs. (7.29) and (7.31) gives 
 
 y  = 4 (7.32) 
 
Once y is known, Eq. (7.30) can be used to find that x = 1.  Eq. (7.29) or (7.31) then gives z =-1.  This 
solution by inspection provides a base from which the Gauss-Jordan elimination procedure may be 
explained.  The Gauss-Jordan Method requires the use of a coefficient tableau like that shown in Tableau 
7.1.  Each value in the tableau represents a coefficient in Eq. (7.29) - (7.31).  Since any solution of 
simultaneous linear equations involves only operations involving the coefficients, the tableau can be used 
to record the manipulations of the equations. 
 
 
  

g(x) 

x1 x3 x2

x 
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 Tableau 7.1 

 
 
For example, the previous solution by inspection can proceed as follows.  Inspection of this tableau shows 
that the addition of the third row to the first row eliminates the x and z coefficients in the first row to give 
 
Tableau 7.2 

 
 
The first row could then be divided by five to give 
 
Tableau 7.3 

 
 
 
This tableau corresponds to the equations 
 
          y        =  4 
 2x +  y        =  6 
 -x + 2y - 2z = 9 
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Therefore, whenever all the variable coefficients in one row in a tableau are zero except for one which has 
the value of unity, the variable having the coefficient of unity equals the value at the end of the row.  
Consequently, the solution of simultaneous linear equations using the tableau consists of making all but 
one of the variable coefficients in each row equal to zero.  The non-zero coefficient is made unity by 
dividing the entire row by its value.  Applying this rationale to Tableau 7.3 requires that row one be 
subtracted from row two which is then divided by two to give 
 
Tableau 7.4 

   
 
Therefore, x =1.  Continuing with the rationale requires that row two be added to row three and twice one 
be subtracted from row three to give 
 
Tableau 7.5 

 
 
Dividing row three by negative two gives 
 
Tableau 7.6 

 
 
Therefore, z = -1.  The tableau in this exhibits a “basic solution”.  That is, each variable column has one 
row with the coefficient of unity while all the other rows contain zeros.   
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The Gauss-Jordan Elimination Procedure involves the multiplication of rows in the coefficient tableau 
and the addition and subtraction of rows to generate a tableau with a basic solution.  This procedure 
cannot rely on such fortuitous circumstances as the simultaneous elimination of both the x and z 
coefficients as was the case in the previous problem.  The procedure consists of the steps below and will 
always result in a basic solution. 
 

1) Choose any non-zero coefficient which is to become unity.  All other values in this 
coefficient column are to become zero.  This coefficient is called the pivot.  The row and 
column containing the pivot are called the pivot row and pivot column, respectively. 

 
2) Divide the pivot row by the pivot value and replace the old pivot row with the result. 
 
3) Perform the following operation for each of the non-pivot rows.  Multiply the pivot row by 

the coefficient in the pivot column of the non-pivot row and subtract the result from the non-
pivot row.  The pivot row remains unchanged, and the non-pivot row is left with a zero in the 
pivot column. 
 

4) Select a new pivot not in a previous pivot row and repeat steps (2) and (3) until a basic 
solution is obtained. 

 
Using the Gauss-Jordan Elimination Procedure to solve equations (7.7)-(7.9) beginning with Tableau 7.1 
would proceed in the following manner.  If the first coefficient in the x-coefficient column is selected as 
the pivot, step (2) is unnecessary.  Step (3) yields the following tableau. 
   
Tableau 7.7 

 
 
If the second coefficient in the y-coefficient column is selected as the new pivot, the tableau becomes. 
 
Tableau 7.8 
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After step (2) and 
 
 
Tableau 7.9 

 
 
after step (3).  Making the last coefficient in the z-coefficient column the last pivot gives 
 
 
Tableau 7.10 

 
 
 
Therefore, x =1, y =4, and z =-1 which is the same result obtained before. 
 
 
 
 
Example 7d  
 
A brass foundry has an order to cast 1000 brass valve bodies.  The composition of the brass is to be 21.2 
percent zinc, 77.14 percent copper, and 1.66 percent tin.  The total weight of brass needed is 2000 pounds.  
The foundry foreman will make the 2000 pound melt by melting some scrap brass doorknobs containing 
75 percent copper, 23 percent zinc, and two percent tin with some red brass containing 80 percent copper 
and 20 percent zinc.  Also, copper with one percent tin will be used to make the 2000 pound melt.  How 
much of each material should be taken to make the desired melt?  All percentages are in weight percent? 
 
Let  x = pounds of brass scrap 
 y = pounds of red brass 
 z = pounds of copper-tin alloy. 
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The total pounds of copper, zinc, and tin in the final melt are 1542.8, 424.0, and 33.2, respectively. 
 
Therefore, 
 0.75x + 0.80y + 0.99z  = 1542.8 
 0.23x + 0.20y   = 424.0 
 0.02x              +  0.01z  = 33.2 
 
The coefficient tableau is 
 
Tableau 7.11 

 x y z  

0.75 0.80 0.99 1542.8 

0.23 0.20 0 424 

0.02 0 0.01 33.2 

 
 
Making the first coefficient in the x-coefficient column the pivot gives 
 
Tableau 7.12 

 
 
Selection of the second coefficient in the y-column as the new pivot gives 
 
Tableau 7.13 
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Finally, selection of the last coefficient in the z-column as the pivot gives 
 
 
Tableau 7.14 

 
 
Therefore, 1597.7 pounds of scrap brass, 282.9 pounds of red brass, and 119.3 pounds of copper-tin alloy 
are required. 
 
 
Gauss-Seidel Method: The Gauss-Seidel Method, unlike Gauss-Jordan Elimination, is a numerical 
method that leads to an approximate solution.  Gauss-Jordan Elimination is a direct method that leads to a 
solution that is as accurate as the computations employed. The Gauss-Seidel Method may be applied to a 
set of non-linear equations, but the outcome is not as certain as for linear systems.   
 
The Gauss-Seidel Method proceeds as follows: 

1. Arrange the equations to be solved so as to have a dominant diagonal.  That is, the largest 
coefficients possible should fall on the diagonal of the coefficient matrix. 

2. Each equation should be solved for the variable falling on the diagonal in terms of the other 
variables. 

3. Initial values of the variables are arbitrarily selected for each variable. 
4. A computational loop is continued in which each variable is successively computed from the 

equations solved in step 2 until the desired level of convergence is achieved. 
 
The Gauss-Seidel Method will converge if the diagonal is dominant.  Some systems cannot be arranged to 
have dominant diagonals because of the coefficients values.  In such cases, some configurations of the 
diagonal may converge while others may not.  Example 7e illustrates the use of the Gauss-Seidel Method. 
 
 
 
Example 7e  
 
Solve the following linear system using the Gauss-Seidel Method: 
 
 2x - 6y – 4z  =  -2 
 5x + 2y – 3z = 14 
 3x + 3y +8z  =  42 

 
 

Rearrange the equations so that the largest coefficients lie on the diagonal as follows 
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 5x + 2y – 3z = 14 
 2x - 6y – 4z =  -2 
 3x + 3y +8z =  42 

 
This is said to have a dominant diagonal.  Next, solve for each of the equations for the variables 
proceeding from left to right as follows: 

 
 x  = (14 - 2y + 3z)/5 
 y  = (-2 – 2x + 4z)/(-6) 
 z =  (42 - 3x - 3y)/8 
 
Initial values (guesses) are selected for y and z (1 and 1, in this case), and updated estimates for x, y, and 
z are computed.  The latest value for each variable is always used until the desired level of convergence is 
achieved as shown below. 
 
When solving non-linear systems, the diagonal should contain the highest powers.  Since there are 
multiple roots in non-linear systems, different initial values may lead to different roots. 
 

 
 
Table 7. Progress of the Gauss-Seidel Solution  

x y z
1 1

3.0000 0.6667 3.8750
4.8583 -0.6306 3.6646
5.2510 -0.3594 3.4157
4.9932 -0.2794 3.4823
5.0012 -0.3212 3.4950
5.0255 -0.3215 3.4860
5.0202 -0.3173 3.4864
5.0187 -0.3180 3.4872
5.0195 -0.3183 3.4870

 
 
 
 
7.3 Systems of Non-Linear Equations 
Presented here are two methods for solving a system of non-linear equations.  The above Gauss-Seidel 
Method presented above may be used but the non-linearity may prevent convergence. Since there are 
multiple roots to a non-linear system of equations, the starting point can determine which roots are found 
if convergence is achieved.  The likelihood of convergence is increased by arranging the equations in 
order of decreasing exponent power rather than decreasing coefficient as with linear equations. A matrix 
based solution to non-linear equations of great value is the Non-linear Newton-Raphson Method. 
 
Multivariate Non-linear Newton-Raphson Method: This is one of the most efficient numerical methods 
for solving simultaneous non-linear equations.  It is based on the same principle as the Newton’s Method 
given in Eq. (7.13) for one equation in one unknown:   
 

 
 
 
n

nn 1 '
n

f x
x x

f x    (7.12) 



7 – Root Finding Methods  7 - 20 

South Dakota School of Mines and Technology   Stanley M. Howard 2000 

 
In the case of multiple equations, this is written as 
 
    

   ' 1
n nnn 1 f x f xx x   (7.33) 

 
xn+1 becomes an array of new values, xn is an array of old values, f(xn) an array of the evaluated functions,  
f΄-1(xn) the inverse array of the slopes.  The matrix of slopes is called the Jacobian and defined as 
 
 

1 1

1 2

2 2

1 2

1n

n

n

n

f f

x x

f f

x x
J

f

x

f

x



 
 

 
 


 




  



  


 

 
 
 
 
 
Example 7f  
 
Solve the following linear system using the Multivariate Non-linear Newton-Raphson Method and 
MathCad. 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

 
 
 
 

f x( )

x
0

x
1 2 3x

2
 4

4x
0

x
1

 x
2 2 11

x
1 2 x

2
 7

















  

Jacobian  Initial Guess 

J x( )

1

4

0

2x
1

1

2x
1

3

2x
2

1











  x

1

1

1











  
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Example 7g  
 
Solve the linear system given in Example 7f using the Multivariate Non-linear Newton-Raphson Method 
and MATLAB. 
 
Solution 
Write the m file containing the function matrix and the Jacobian matrix and solve 
 

x=[1 1 1 ]' % Set the initial guesses for x 
for i= 1:5  % Start a loop for converging on the roots 
  %Define the function matrix  
  Jf=[x(1)+x(2)^2-3*x(3)+4;4*x(1)-x(2)+x(3)^2-11;x(2)^2+x(3)-7] 
  %Define the Jacobian matrix   
  JJ=[1, 2*x(2), -3 ; 4,-1,2*x(3);0,2*x(2), 1] 
  %Compute the new estimates of the roots    
  x=x-inv(JJ)*Jf    
end   %Repeat 5 times for convergence 

 
 

First iteration   
    
       

Current estimated roots 

x2 x J x( )
1

f x( )  x2

1.973

2.378

3.243











  

Second iteration 

x3 x2 J x2( )
1

f x2( )  x3

1.016

2.029

3.004











  

Third iteration 

x4 x3 J x3( )
1

f x3( )  x4

1

2

3











  

Check answer  

f x4( )

0

0

0











  
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    1.0000    4.0585   -3.0000 
    4.0000   -1.0000    6.0079 
         0         4.0585    1.0000 
 
x = 
    1.0000 
    2.0002 
    3.0000 
 
Jf = 
   1.0e-03 * 
    0.8446 
    0.0154 
    0.8446 
 
 
JJ = 
    1.0000    4.0004   -3.0000 
    4.0000   -1.0000    6.0000 
         0         4.0004    1.0000 
 
x = 
    1.0000 
    2.0000 
    3.0000 
 
Jf = 
   1.0e-07 * 
    0.4351 
    0.0010 
    0.4351 
 
JJ = 
    1.0000    4.0000   -3.0000 
    4.0000   -1.0000    6.0000 
         0         4.0000    1.0000 
 
x = 
    1.0000 
    2.0000 
    3.0000     Solution 


