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11 –Optimization 
 
Optimization is a subject that not only could be an entire course but an entire degree program.  It is the 
province of Operations Research.  Nevertheless, engineers and scientists frequently need optimization 
tools to find optimal solutions to multivariate problems including the efficient allocation of resources to 
achieve a maximized output or minimized cost, the best coefficients for a curve fit of measured data, and 
the adjusting of data in a table to the best values that continue to observe known, constraining 
relationships among the data.   A few tools are presented here that have been selected for their usefulness 
to all engineering and science professionals.  They are 

 Linear Programming: Simplex, Graphical, Big-M 
 Microsoft Excel Tools: Goal Seek and Solver 
 Data Adjustment 
 Regression Analysis 

 
11.1 –Introduction to Linear Programming 
Linear programming is a relatively recent optimization method. During World War II, Dantzig developed 
the method’s fundamentals and it was adopted quickly as an efficient way of solving a wide range of 
problems encountered in engineering and other disciplines. In engineering, linear programming is used to 
solve problems involving personnel assignment, building design, transportation, water resource 
management, and countless other areas. 
 
Linear programming problems involve the allocation of limited resources to the production of alternative 
products or services. For example, an electronics firm that produces calculators, iPods, and PDAs is 
limited in its total productivity by the maximum number of employees it can locate in its plant and equip 
with tools. At full production the firm has 1000 employee-hours per day for the production of the three 
items. The firm may use linear programming to determine how to allocate its work force so as to 
maximize the profit derived from the production of its three items. 
 
The solution of this problem by linear programming requires that all constraints that limit the production 
of each item be known. For example, previous agreement to another business may require that the firm 
make at least five iPods per day. On the other hand, license agreements may restrict the maximum 
number of calculators per day to ten. In addition to establishing the above constraints, the firm cannot use 
linear programming to solve this problem unless a linear relationship exists between the number of 
employee hours and the number of each item produced. That is, each iPod, produced must require the 
same number of employee-hours whether it is the first or last iPod, produced. Even though a different 
number of employee-hours may be required to produce a PDA, than a calculator, the same numbers of 
hours must be required for each PDA, and each calculator. In addition to the linear relationship between 
inputs (employee-hours, soldering facility hours, license agreements) and outputs (calculators, PDAs, 
iPod), a linear relationship must also exist between the profit derived from each item and the number of 
each item produced.  These characteristics of linear programming problems can be stated in a precise, 
mathematical manner. 
 
Linear Output Constraints: If the output quantities are x1, x2, x3, then 
 

a11x1 +  a12x2 +  … a1nxn   b1 (11.1) 
a21x1 +  a22x2 +  … a2nxn   b2 (11.2) 
 . . .  
ai1x1 +  ai2x2 +  … ainxn     bi (11.3) 
 . . .  
am1x1 +  am2x2 +  … amNxN   bm (11.4) 
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where N  =  Number of variables 
 m  =  Number of constraining equations 
 a  =  Constraint constants 
 b  =  Limitations in available resources. 
 
This matrix of equations is not difficult to understand in a particular example. In the case of the 
electronics firm, one constraint equation comes from the fact that no more than 1000 employee-hours are 
available per day for production. Therefore, 
 

a11x1+ a12x2 + a13x3 ≤ 1000 (11.5) 
 

where  x1 =  Number of iPods produced per day 
 x2  =  Number of PDAs produced per day 
 x3  = Number of calculators produced per day 
 a11= The number of employee-hours required to 
  produce one iPod 
 a12 = The number of employee-hours required to 
  produce one PDA 
 a13 = The number of employee-hours to produce 
  one calculator 

 
If the firm is not allowed by an existing license agreement to make more than ten calculators a day, then 
 
 a21x1 + a22x2 + a23x3  ≤  10 (11.6) 
 
where  a21 = a22  = 0 and  a23 = 1. 
 
If the circuit boards for both the iPods and the PDAs must be soldered on the firm’s only automatic 
soldering machine that is available only 16 hours per day, then 
 

a31 +  a32x2  +  a33 x3  ≤  16 (11.7) 
 
where a31  = The number of hours it takes to solder each iPod 
 a32   = The number of hours it takes to solder each PDA 
 a33 = The number of hours it takes to solder each calculator 
 
Linear Objective Function: The objective function, f, must be described mathematically as 
 

 
N

j j
j 1

f c x


  (11.8) 

 
where jc  = the objective function coefficient  

 jx = The number of j units of output 

 
In the case under consideration, the objective is profit maximization and the objective function is 
 
 f = c1x1 + c2x2 + c3x3 (11.9) 
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where c1, c2, and c3 are the profits realized from the production of each iPod, PDA, and calculator. 

 
Optimization problems, which can be put in the above form, may be solved by a variety of linear 
programming techniques. Problems that can be formulated with two unknowns can be solved by the 
Graphical Method. A variety of techniques have been developed for solving linear programming 
problems having as many as thousands of unknowns and thousands of constraint equations. Sophisticated 
code methods have been devised to solve such massive problems with a computer. The less-sophisticated, 
techniques called the Graphical Method and the Simplex Method are presented in the following section. 
 
11.2 –Linear Programming Solutions by the Graphical Method 
The graphical method of solving linear programming problems is limited to two variables since 
representation of more variables on a graph is too difficult to visualize. The graphical method consists of 
representing one output on the horizontal coordinate and the second output on the vertical coordinate. The 
constraints on each output are then plotted on the graph to define regions in which the solution cannot lie. 
The remaining region on the graph is called the area of feasible solution, and the objective function is 
used to find the optimum point within that region. The following example shows this procedure. 

 
A civil engineer employed by a large contracting firm is in charge of construction projects in South 
Dakota. At present, three job sites within the State require a total of 120 tons of steel reinforcing bar. The 
steel was ordered by the district office and is deposited at Rapid City and Sioux Falls. There are 50 tons at 
Rapid City and 70 tons at Sioux Falls. The three job sites are at Pierre, Winner, and Faith. The Pierre job 
requires 60 tons, Winner 20 tons, and Faith the remaining 40 tons. Table 1 shows the transportation 
charges per ton of steel from Rapid City and Sioux Falls to each job site. The Graphical Method can be 
used to determine how the shipment of steel should be made to minimize the transportation cost. 
 

Table 1. Transportation Charges in Dollars Per Ton 
From                /To Pierre (60)    Faith (40)    Winner (20) 
Rapid City (50) 3.0 2.0 1.80 
Sioux Falls (70) 3.5 3.2 4.30 

 
If x represents the tons of steel shipped from Rapid City to Pierre and y the tons shipped from Rapid City 
to Faith, then all the other tonnages may be expressed in terms of these variables as shown in the Table 2. 
  

Table 2. Quantities of Steel Shipped 
From                /To   Pierre (60)    Faith (40)    Winner (20) 
Rapid City (50) x y 50- x-y 
Sioux Falls (70) 60-x 40-y -30 + x + y 

 
The amount of steel shipped from Rapid City to Winner is equal to the total 50 tons shipped from Rapid 
City minus the amounts shipped to Pierre and Faith, (x + y). Likewise, the quantities shipped from Sioux 
Falls to each site is determined by subtracting the amount shipped from Rapid City from the amount 
required at each site.  If total supply exceeded total demand, a third variable for the amount shipped from 
Rapid City to Winner would be needed. 
 
The objective function f in this problem is total shipping cost, which is the sum of the shipping costs to 
each city times the quantity shipped to each city. 

 
 f = 3.00x + 2.00y + 1.80(50-x-y) + 3.50(60-x) + 3.20(40- y) + 4.30 (x+ y-30) (11.10) 
or  
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 f  =  299 + 2.0x + l.3y (11.11) 
 
The constraints arise from the limitations in the quantities that can be shipped. None of the quantities in 
the table can be less than zero. Therefore, 
 
 x   0 (11.12) 
 y   0 (11.13) 
 50 -  x – y    0 (11.14) 
 60 – x  0 (11.15) 
 40 – y  0 (11.16) 
 -30 + x  + y   0  
 
Rearrangement gives 
 
 x   0 (11.17) 
 y   0 (11.18) 
 x + y  ≤ 50 (11.19) 
 x  ≤ 60 (11.20) 
 y  ≤ 40 (11.21) 
 x  + y   30 (11.22) 
 
These inequalities are plotted in Figure 1. The unshaded areas are regions that violate the inequalities. The 
shaded area is called the area of feasible solution, because any point in the area constitutes an allowable 
solution (i.e.  a solution that keeps all of the quantities shipped ≥ 0). The optimum solution within the area 
of feasible solution is determined using the objective function, f (x, y). 
 
The cost equation can be rearranged to the form 

 

 
f 299 2.0y x
1.3 1.3
   (11.23) 

    
This is a parametric equation and may be plotted providing a value of the parameter f is chosen. Figure 1 
shows this equation for three values of f = 299, 319, and 361. These objective function lines all have the 
same slope of -2.0/1.3. The objective function line should be thought of as a sliding line with constant 
slope. The further the line moves into the first quadrant, the greater the shipping cost. Since the optimum 
solution must be the minimum cost area of feasible solution, the optimum solution is the first point in the 
area of feasible solution that the objective function line intercepts as it slides away from the origin 
towards the area of feasible solution. This point is (0, 30). Therefore, no steel should be shipped to Pierre 
from Rapid City while 30 tons should be shipped to Faith from Rapid City. Other tonnages may be 
determined by substituting x = 0 and y = 30 into the Table 2. The minimum cost is determined by 
substituting the optimal x and y values into the cost equation. 
 
 f  = 299 + 2.0(0) + 1.3(30) = $338 (11.24) 
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 Figure 1.  Area of Feasible Solution and Optimal Solution. 
 
 
11.3 –Linear Programming Solutions by the Simplex Method 
The Simplex Method of solving linear programming problems requires the manipulation of a set of 
equations obtained from the constraint equations and the objective function. The equations obtained from 
the constraints expressed by equations (11.1) through (11.4) are first written in terms of equalities by the 
introduction of a slack variable into each equation.  No slack variable can be less than zero, because the 
Simplex Method solves only ≤ constraints.  Each right-hand-side term represents a resource available, 
which can never be less than zero. Equations (11.1) through (11.4) then become 
 

a11x1  + a12x2 +…  a1nxn +  s1 = b1  (11.25) 
a21x1  + a22x2 +…  a2nxn + s2 = b2 (11.26) 
 . . . . .  
ai1x1  +  ai2x2 +…  ainxn + si =  bi (11.27) 
 . . . . .  
am1x1 + am2x2 +…  amnxn + sm = bm (11.28) 

 

f = 299 f = 319 f = 361
Direction of 
decreasing cost 

Lowest-cost 
Feasible Solution 

Area of 
Feasible 
Solution
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where s1, s2, …si, sm are the slack variables. The coefficients of these equations and the objective function 
then form the coefficient tableau shown in Tableau 1. 
 

Tableau 1 
x1 x2 … xn s1 s2  si  sm f RHS 
a11 a12 … a1n 1 0 … 0 … 0 0 b1

a21 a22 … a2n 0 1 … 0 … 0 0 b2 
                     

ai1 ai2 … ain 0 0 … 1  0 0 bi 
                     

am1 am2 … amn 0 0 … 0 … 1 0 bm 
-c1 -c2  -cn 0 0 0 0 0 0 1 0 
 

The objective function in the tableau is in the form 
 

 
m

i i
i 1

f c x 0


   (11.29) 

 
 

and the objective, f, is treated as an unknown. 
 
Examination of Tableau 1 shows that excluding the last row there are m equations in m + N unknowns. 
Since there are N more unknowns than equations, a solution of the equations represented by the tableau is 
not possible unless N variables are specified. The goal of any linear programming technique is to specify 
the value of N of the variables in such a manner as to maximize (or minimize) the value of the objective, 
f. 
 
One solution of Tableau 1 is when x1 = x2 =  . . .  = xn = 0.  In that case, the whole left side of the tableau 
is of no consequence and the left side starting with the s1 column forms a Basic Feasible Solution (BFS) 
which is 

  
 s1 = b1 (11.30) 
 s2 = b2 (11.31) 
   
 si = bi (11.32) 
   
 sm = bm

 (11.33) 
 
 f=0 (11.34) 
 
This is only one of many possible BFSs. The BFS is shaded here and throughout this chapter for clarity.   
 
Other BFSs may be obtained by selecting any of the non-zero coefficients as a pivot and applying the 
Gauss-Jordan elimination procedure. For example, if coefficient ai2, is selected as the pivot, Tableau 2 
would be generated from Tableau 1. The coefficients in Tableau 2 are primed to indicate they are not the 
same as the corresponding coefficients in Tableau 1. Also, coefficients have been added to the tableau to 
replace the values of one and zero that changed. The new BFS is '

1 1s b , '
2 2s b , … '

i is b , m ms b ,  f 

= 0. 
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Tableau 2 
x1 x2 … xn s1 s2 … si … sm f RHS 
a’

11  … a’1n 1 0 … r1i … 0 0 b'
1

a’21  … a’2n 0 1 … r2i … 0 0 b’2 
                    

a’i1 1 … a’in 0 0 … rni  0 0 b’i 
                    

a’m1  … a’mn 0 0 … rmi … 1 0 b’m 
-c’1  … -c’n 0 0 0 r0i 0 0 1 b'0
 

This new BFS is an improvement over the first BFS since the value of the objective variable is now b’0 

rather than zero. This discovery leads to the formal statement of the Simplex Method that maximizes f. 
 

1) Find the column with the most negative coefficient in the objective function row. This is the 
pivot column. 

 
2) Divide each coefficient in the pivot column into the element in the column farthest right. 

Note the resulting quotient but do not change any values in the tableau. The row yielding the 
smallest non-negative number is the pivot row. The pivot is the intersection of the pivot 
column and pivot row. 

 
3) Apply the Gauss-Jordan Elimination Procedure about the pivot. 

 
4) Repeat steps 1 through 3 until no negative coefficients remain in the objective function row. 

The optimum solution is the remaining BFS. 
 
The rationale for step (1) is to enter into the BFS the variable that has the greatest favorable impact on the 
objective function.  Step (2) is performed to determine the equation that has the severest constraint on the 
production of the identified most-favorable variable.  After all, the quotient is the amount of the favorable 
variable that each constraint will allow to be produced.  Limiting production to the most severely limited 
constraint assures that no resource (RHS) will ever go negative – a physically impossible condition.  Step 
(3) is simply the mathematical process of entering the favorable variable into the BFS.  Step (4) continues 
the entire process until no adjustment in production can improve the objective. Example 3 illustrates the 
method for a sample problem. If the Simplex Method were applied to a problem solved by the Graphical 
Method each simplex cycle may be thought of as essentially moving the BFS from one vertex to an 
adjacent vertex. 
 
The difference between maximizing and minimizing an objective is simply the sign of the objective 
function.  Simplex maximizes f, but if the objective function is written in terms of –f and –f is maximized 
then the value of f is minimized.  This means that simplex may be used without modification to minimize 
the objective if the f term is recast as –f in the starting tableau.  To demonstrate this with simplex is 
difficult because meaningful examples require a ≥ or equality constraint.  This technique will be 
illustrated in the Big-M Method section that can accommodate such constraints. 
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Example 11a 
 
The electronics firm described at the beginning of this section has 1000 employee-hours per day for the 
production of iPods, PDAs, and calculators. By license agreement the firm can manufacture as many as 
10 calculators per day. Furthermore, each PDA, and iPod, must pass through the soldering facility that is 
limited to 200 employee-hours of work per day.  Each PDA, requires two hours in the soldering facility 
and each iPod, requires five hours. Calculators do not enter the soldering group. Each iPod, PDA, and 
calculator requires 20, 5, and 4 employee-hours to produce. If each iPod, PDA, and calculator returns an 
income of $120, $50, and $60, how many of each item should the firm produce to maximize its profit? 
 
If 
 x =  Number of iPods 
 y =  Number of PDAs 
 z =  Number of calculators 

 
then the constraint equations are 
 
 20x +  5y +  4z  ≤ 1000 (11.35) 
   5x +  2y ≤ 200 (11.36) 
                         z ≤ 10 (11.37) 
 
Introducing slack variables gives 
 
 20x +  5y +  4z +  s1 = 1000 (11.38) 
   5x +  2y                    + s2 = 200 (11.39) 
                         z                    + s3  = 10 (11.40) 
 
The slack variables do have some significance. For example, s1 equals the number of employee-hours not 
used per day. It may be zero. The value of s2 represents the number of hours not used in the soldering 
facility. The number of calculators that could have been produced per day but were not is equal to s3.  The 
objective function is profit and is 
 
 f - 120x - 50y - 60z  =  0. (11.41) 
 
These equations yield the following tableau: 

  
Tableau A 

x y z s1 s2 s3 f RHS
20 5 4 1    1000 
5 2   1   200 
  1   1  10 

-120 -50 -60    1 0 
 
The BFS to the above tableau is to manufacture nothing.  In that case, (i.e. x = y = z = 0), and the BFS is 

 

 s1  =  1000,  s2 = 200,  s3 = 10,  f    =  0 (11.42) 

 
The value of f can be increased by increasing either the number of iPods, PDAs, or calculators produced. 
However, since each iPod returns an income of $120 compared to only $50 and $60 for the other two 
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items, its production should be given first consideration. To determine the maximum number of iPods that 
can be manufactured without violating any of the constraints, one must determine the equation that most 
severely restricts the number of iPods that can be produced. For example, Eq. (11.38), which is 
represented in the Tableau A by the first row, limits the maximum number of iPods at 50.  That is, each 
unit requires 20 employee hours and there are 1000 employee hours available. Likewise, Eq. (11.39) 
limits the maximum number of iPods at 200/5 = 40. Eq. (11.40) imposes no restrictions, which is to say 
that insofar as Eq. (11.40) is concerned, an infinite number of iPods could be produced.  These numbers 
are the ratios obtained in step #2 of the simplex instructions.  Since the lowest number is 40, the tableau 
will be transformed by Gauss-Jordan elimination to have a BFS with x =  40.  That is, the x-coefficient in 
the second row will become the pivot.  The result is Tableau B. 
  

Tableau B 
x y z s1 s2 s3 f RHS 
 -3 4 1 -4   200 

1 2/5   1/5   40 
  1   1  10 
 -2 -60  24  1 4800 

 
The BFS is now when y = z = s2 = 0 and x = 40, s1 = 200, s3 = 10, and f =4800. Therefore, by producing 
40 iPods, the firm’s income is $4800. However, since the last row in the above tableau represents the 
equation. 

 
 -2y - 60z + f = 4800 (11.43) 
 
The production of either PDAs or calculators, subject to resource constraints, would increase the income. 
Calculators are currently the most advantageous to the objective. Row three is the most severe constraint 
to the maximum number of calculators that can be produced. Making the coefficient in row three column 
three the pivot yields Tableau C. 
  

Tableau C 
x y z s1 s2 s3 f RHS 
 -3  1 -4 -4  160 

1 2/5   1/5   40 
  1   1  10 
 -2   24 60 1 5400 

 
The BFS is now x = 40, z =  10, s1 =  160, and f = 5400. Therefore, income is up by $600.  Also, the 
number of employee-hours not used is down from 200 to 160.  Furthermore, the negative coefficient in 
the last row shows that further optimization is possible by increasing PDA production from zero to the 
maximum number permitted by the current constraint equations. In this case, row two limits maximum 
PDA, production to 100 units.  Making the coefficient in row two column two the pivot yields 
 

Tableau D 
x y z s1 s2 s3 f RHS 

15/2   1 -5/2 -4  460 
5/2 1   1/2   100 

  1   1  10 
5    25 60 1 5600 
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The BFS is now y = 100, z = 10, s1 = 460, and f = 5600.  This surprising result excludes the production of 
any iPods and increases the total number of unused employee-hours to 460 while increasing total income 
to $5600. Since the last row, which represents the objective function, no longer has any negative 
coefficients, the current BFS is the optimal solution.  
 
11.4 –Linear Programming Solutions by the Big-M Method 
The Graphical Method allows both ≤ and ≥ constraints but is limited to two independent variables.  The 
Simplex Method allows unlimited variables but allows only ≤ constraints.  Therefore, a method is needed 
that will handle many variables, both ≤ and ≥ constraints, and equality constraints.  Equality constraints 
arise in many problems ranging from producing a specified mass of alloy from sundry scrap piles at 
minimum cost to the distribution of a good or service that cannot be stored such as electricity in a regional 
power grid.  There are many methods for solving such LP Problems but the first stop is the Big-M 
Method.  Also, it seems fitting that the Big-M Method is something every Mines student should know, 
even though the method is named for a factor used in the method, not SDSM&T. 
 
The first step in the Big-M Method is to convert all of the constraint equations to equalities. In the case of 
≤ constraints, slacks are added as before.  Slacks represent the amount of resource that could have been 
used that was not used.  To make the ≥ constraints equalities, surplus variables are subtracted from the 
left side of each such equation.  As with slack variables, surplus variables are also always positive or zero.  
They represent the amount of a resource that was used that did not need to be used.  Of course, equality 
constraints need no modification.  Tableau E is an example tableau after all the constraints are made 
equalities. 

  
Tableau E 

x y z s1 s2 s3 f RHS 
20 5 4 1    2000 
5 2   1   400 
  1   -1  10 

1 2 1     50 
-20 -50 -60    1  

 
Tableau E is similar to the previous Simplex Method example except the third and fourth constraints are 
different.  The third constraint now requires that at least 10 calculators are produced.  The surplus value s3 
represents the number of calculators produced that are not needed to satisfy this requirement.  The fourth 
constraint is an equality constraint that requires that the number of iPods plus twice the number of PDAs 
plus the number of calculators produced must equal 50 – no more and no fewer.  This seems an unrealistic 
constraint but nevertheless provides a suitable example to illustrate the Big-M Method. 
 
The goal is to convert Tableau E into a form that can be processed by the Simplex Method. Examination 
of the tableau shows there is currently no BFS.   Since the tableau consists of 7 unknowns and 5 
equations, there are 2 degrees of freedom. There are no two variables that can be set to zero to form a 
BFS.  Even the s3 column cannot be converted into an element in the BFS, because dividing the third 
constraint by -1 changes the right-hand-side resource into a negative amount.  This would be a violation 
of the basic tenet of the Simplex Method.  The escape from this dilemma is provided by the Big-M 
Method.  
 
The Big-M Method dictates that each ≥ constraint and equality constraint equation receives an artificial 
variable, A.  These artificial variables seem – and indeed are – a violation of the mathematical equality in 
each constraint unless the each have a value of 0.  Since the values of the independent variables keep 
changing as the Simplex Method proceeds towards the solution, the inclusion of artificial variables would 
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not change the mathematical integrity of the problem statement so long as the final solution ends with 
every artificial variable equaling zero.  That is, if none of the artificial variables appear in the optimal 
BFS, then all of the artificial variables would be zero and of no consequence.  The way to assure that no 
artificial variable appears in the optimal BFS is to make the cost of using each artificial variable very 
detrimental to the objective.  These detrimental values are termed Big M’s.  When these changes are 
made, Tableau E becomes Tableau F.  If the negative values in the x, y, and z columns are favorable to 
the objective, the large positive M’s in the artificial columns are very detrimental to the objective.  This 
will assure that the optimal solution will contain no artificial values. 

  
Tableau F 
x y z s1 s2 s3 A1 A2 f RHS 

20 5 4 1      2000 
5 2   1     400 
  1   -1 1   10 

1 2 1     1  50 
-20 -50 -60    M M 1  

 
Tableau F almost contains a BFS.  All that is needed is to drive out the Big-M’s in the artificial variable 
columns.  This is accomplished by multiplying each constraint equation containing a “1” above each 
artificial value by –M and adding the resulting equation to the objective equation.  For example, the third 
constraint equation is to be multiplied by –M and the result added to the objective function so as to drive 
out the M in column A1.  This is repeated for each artificial variable column.  This process results in 
Tableau G.  The boxed area shows the results of the equation-by-equation additions in the objective 
equation that are then summarized in the last row.  Tableau H is a repeat of Tableau G without the 
superfluous boxed row.  A BFS is now present since there are nine variables, five equations, and four 
degrees of freedom used to set x = y = z = s3 = 0.  The BFS is now 
 
 s1 = 2000, number of total employee hours not used that could be used. (11.44) 
 s2 = 400, number of soldering facility hours not used that could be used. (11.45) 
 A1 = 10, number of units of the mysterious Artificial 1 item used. (11.46) 
 A2 = 50, number of units of the mysterious Artificial 2 (11.39)item used. (11.47) 
 F = -60M, current profit – a very serious loss because A1 and A2 was used. (11.48) 
 
The Simplex Method can now be used to find the maximum profit.  Since two artificial values must be 
removed from the initial BFS, at least two simplex pivot cycles must be employed to eliminate the initial 
artificial values from the BFS.  As the artificial variables leave the BFS, the Big M terms will leave the 
objective row.  At the optimal solution, no negative values will remain and no Big-M value will appear in 
the RHS of the objective row as shown in Tableaus I – K. 

  
Tableau G 
x y z s1 s2 s3 A1 A2 f RHS 
20 5 4 1      2000 
5 2   1     400 
  1   -1 1   10 

1 2 1     1  50 
-20 

           
--MM  

-50 
              

--22MM  

-60   
--MM  
--MM  

        
MM  

M 
--MM  

M 
  

--MM 

1 
  

              
--1100MM      
--5500MM 

-20  
-M 

-50    
-2M 

-60   
-2M 

   
M 

  1 -60M    
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Tableau H 

x y z s1 s2 s3 A1 A2 f RHS 
20 5 4 1      2000 
5 2   1     400 
  1   -1 1   10 

1 2 1     1  50 
-20   
-M 

-50   
-2M 

-60  
-2M 

   M   1 -60M   

 
 
Tableau I 

x y z s1 s2 s3 A1 A2 f RHS 
20 5  1  4 -4   1960 
5 2   1     400 
  1   -1 1   10 

1 2    1 -1 1  40 
-20   
-M 

-50    
-2M 

    -60 
-M 

60 
2M 

 1 600 
-40M   

 
 
Tableau J 

x y z s1 s2 s3 A1 A2 f RHS 
17.5   1  1.5 -2 -2.5  1860 

4    1 -1 1 -1  360 
  1   -1 1   10 

0.5 1    0.5 -1 0.5  20 
5      -35 35 

+M 
25 
+M 

1 1600    

 
 
Tableau K 

x y z s1 s2 s3 A1 A2 f RHS 
16 -3  1    -4  1800 
5 2   1     400 
1 2 1     1  50 
1 2    1 -1 1  40 
40 70     M 60 

+M 
1 3000   

 
 
The optimal solution is to produce 50 calculators and no iPods or PDAs.  The slack variables tell a story 
of tremendous unused resources: 1800 employee hours and 400 soldering facility hours. A total of 40 
calculators are being produced that do not need to be produced, but it is profitable to do so.  The total 
profit is 3000.  As expected, total artificial variable use is zero. 
 
Linear programming problems are solved using computational packages.  A Microsoft Excel® program 
that shows step-by-step progress through the Big-M method with helpful active dialog boxes is available 
at http://showard.sdsmt.edu/BigM.htm. 
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There are several facets of the Simplex and Big-M Methods that every user of the method should know.  
 

 Slacks and surpluses are always ≥0 
 For every simplex pivot cycle, one variable leaves and one variable enters the BFS. 
 There must be at least as many pivot cycles as there are artificial variables. 
 The area of feasible solution in a multivariant problem is actually a hypervolume bounded by 

planar hypersurfaces with feasible solutions at the vertices. 
 Each simplex pivot cycle moves the feasible solution from one hypervolume vertex to an adjacent 

vertex. 
 The only difference between minimization and maximization is whether f or –f is being 

maximized. 
 The RHS column represents resources each of which must always ≥ 0. 
 The Simplex Method always enters the next currently-most-favorable variable into the BFS. 
 The f column, or –f column in the case of minimization, never change during simplex and for that 

reason may be removed from the tableaus. 
 In minimization conditions, the RHS of the objective row is often negative at the optimal solution 

since it is the value of -f. 
 For convenience most programmers who write Big-M solution code add an artificial variable to 

every constraint equation whether one is needed or not. 
 No artificial variable will appear in the optimal BFS. 
 The use of artificial variables creates (or creates a larger) BFS hypervolume, but the optimal 

solution does not fall within the domain of any artificial value.    
 
 

 
Example 11b 
 
Repeat the Example 10a except assume the profits are costs that are to be minimized, at least 10 
calculators are produced, and that production is constrained such that  
  
 x + 2y + z = 50 (11.49) 

 
Since the objective is minimum cost, f  = 120x + 50y + 60z, the negative of cost will be maximized.  
When this function is placed in the proper form shown in Eq. (11.29) for insertion into a tableau, it 
becomes 
 
 120x + 50y + 60z -f  = 0 (11.50) 
  
The starting tableau is shown in Tableau L but must have artificial variables added and Big-M’s 
added as shown in Tableau M before a starting BFS shown in Tableau N.  
 

Tableau L 
x y z s1 s2 s3 -f RHS 
20 5 4 1    2000 
5 2   1   400 
  1   -1  10 

1 2 1     50 
120 50 60    1  
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Tableau M 

x y z s1 s2 s3 A1 A2 -f RHS 
20 5 4 1      2000 
5 2   1     400 
  1   -1 1   10 

1 2 1     1  50 
120 50 60    M M 1  
  
 
Tableau N 

x y z s1 s2 s3 A1 A2 -f RHS 
20 5 4 1      2000 
5 2   1     400 
  1   -1 1   10 

1 2 1     1  50 
120 

            
--MM  

50 
              

--22MM  

60   
--MM  
--MM  

        
MM  

M 
--MM  

M 
  

--MM 

1 
  

              
--1100MM      
--5500MM 

120   
-M 

50    
-2M 

60   
-2M 

   
M 

  1 -60M    

 
 
The starting BFS above is s1 =  2000, s2 = 400,  A1 = 10,  A2 = 50,  f = -60M.  Proceeding according to 
the Simplex Methods yields the following: 

 
 
Tableau O 

x y z s1 s2 s3 A1 A2 -f RHS 
17.5  1.5 1    -2.5  1875 

4  -1  1   -1  350 
  1   -1 1   10 

0.5 1 0.5     0.5  25 
95  35   

-M 
   M  -25 

M 
1 -1250 

-M     
  
 
Tableau P 

x y z s1 s2 s3 A1 A2 -f RHS 
17.5   1  1.5 -2 -2.5  1860 

4    1 -1 1 -1  360 
  1   -1 1   10 

0.5 1    0.5 -1 0.5  20 
95     35 -35 

M 
-25 
M 

1 -1600   

 
 
The optimal solution is y = 20, z = 10, s1 = 1860, s2 = 360, x = A1 = A2 = 0. 
The minimum cost is 1600. 
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11.5 –Microsoft Excel Tools 
Microsoft Excel® has many features that simplify the drudgery of technical computations.  Two tools that 
are commonly overlooked are Goal Seek and Solver.  This section will outline the use of these valuable 
tools. 
 
Goal Seek: Goal Seek is found under the Tools Menu as shown in Figure 2a.  When it is selected, the 
dialog box shown in Figure 2b is available. 
 

 
 
 Figure 2.  Accessing Goal Seek a) Opening, b) The Goal Seek Dialog Box. 
 
  
Goal Seek is used to find a value of a variable that will satisfy a user-entered criterion.  It will adjust one 
cell’s value so as to change the value of another cell to a user-entered value.  Figure 3a shows such a 
situation.  Cell B2 depends on cell B1 in the way indicated (for illustration only) in Cell C2.  According 
to the entered conditions, when the value of B1 is the cube root of 23, cell C2 will be zero.  Once these 
selections are entered into the Goal Seek Dialog Box, Goal Seek immediately and quickly returns to cell 
B1 the value that satisfies the entered criterion.  The returned information describes the current value of 

(a) 

(b) 



10 – Optimization  11 - 16 
 

South Dakota School of Mines and Technology   Stanley M. Howard 2000 
 

the variable that was selected to change and the current value of the target cell.  Example 10c shows the 
use of Goal Seek. 
 

 
 
Figure 3.  Use of Goal Seek a) Entering the requested information, b) the returned results. 
 
 
Solver: Solver differs from Goal Seek in that it will change one, or more, values in search of a specified 
objective.  Solver is accessed as shown in Figure 5a and consists of the dialog box shown in Figure 5b 
and a constraint input dialog box shown in Figure 5c.  If Solver does not appear under the Tools Menu, it 
must be added using the Add-In Menu as shown in Figure 6a.  If it is does not appear in the Add In list 
shown in Figure 6b, Solver needs to be installed from the Microsoft Excel Installation CD’s.   
 
Figure 5b shows the robust options available in Solver.  A target worksheet cell – the value to be 
optimized - can be selected to be a maximum, minimum, or a specified value.  The values that can be 
changed in order to reach the optimal value are entered as the Changing Cells.  Constraints on the cells to 
be changed can be added in the Constraints Panel.  There must be some mathematical relationship 
between the Target Cell and the Changing Cells. 
 
Example 10d illustrates the use of Solver.

(a) 

(b) 
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Figure 5. Solver a) Accessing, b) Dialog Box, c) Constraint Dialog Box 

(c)

(b) 

(c) 

(a) 
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Figure 6. Adding In Solver a) Add In Menu Item, b) Selecting Solver to Add In 
 
 

(b) 

(a) 
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Example 11c 
 
Use Goal Seek to find the value of x that makes the function f(x) = 7x3 + 4.3ln(x) - 24.3 equal to 98. 
 
Solution 

 
  
 Figure 7. Solution to Example 10c 

(a) 

(b) 
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Example 11d 
 
Use Goal Seek to solve Example 10b 
 
Solution 
Figure 8a shows the Microsoft Excel worksheet and Solver setup.  The equations placed in cells A5:A7 
and A8 have been pasted in to the right so the student can see how the values in column A are computed.  
The Changing Cells are B1:B3, which are the values of x, y, and z, the numbers of iPods, PDAs, and 
calculators.   
 

 
 
Figure 8. The Microsoft Excel Worksheet and Solver Setup  
 
In addition to the constraint equations normally entered into the Big-M Method , the Solver constraints 
includes a requirement that numbers of iPods, PDAs, and calculators cannot be negative.  The Big-M and 
Simplex Methods are inherently designed to assure this never occurs, but Solver has no such limitations 
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so it must be explicitly stated.  Otherwise, Solver will try to make the most negative numbers of the most-
detrimental-to-the-objective product so as to free up resources for the more favorable use of resources.  
Figure 9 shows the solver solution to Example 10d. 
 

 
  Figure 9. Microsoft Solver Solution to Example 10d.  
 
 
11.6 –Data Adjustment 
Data adjustment is a method of rationalizing measured tabular data so that it conforms to mathematical 
relationships known to exist among the data.  For example, Figure 10 shows a material processing circuit.  
Plant operators may periodically measure the flow rates for each streams into and out of each of the four 
unit operations as tabulated in Table 3.  Each unit operation has material flows in and out of it.  Over 
time, the mass of material into each operation must equal the mass out; otherwise, mass would be 
accumulating in a unit operation over time.  Since there are four unit operations, there are four equations 
that must be satisfied.  They are  
 
 A + B  =  C + D (11.51) 
  
        C  =  B + E (11.52) 
  
 E + F  =  G + H (11.53) 
  
       H  =  F + I (11.54) 
 
If each column in Table 3 is averaged to get summary data for a report, one quickly discovers that Eqs. 
(11.51) - (11.54) are not observed.  There are many reasons for this ranging from short term variations in 
flow rates of each stream to measurement errors.  What is needed is a method that will arrive at the best 
summary values of each flow stream.  The method for accomplishing this is called Data Adjustment. 
 
No matter what values are selected for summary values, there is always going to be errors somewhere in 
the fit to the measured data.  Mathematicians, engineers, and scientist all agree that the definition of best  
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 Rougher 
Flotation

 
Cleaner Flotation

Cu-Mo 
Separation

 
Mo 

Cleaner 
Flotation

A

B

C

D
E

H

GF

I

Molybdenum 
Concentrate  

 
 
 Figure 10.  A Material Flow Circuit  
 
 

Table 3.  Measured Flow Rates for the Material Flow Circuit 
A B C D E F G H I 
5050 255 4200 1000 4040 395 810 3575 3180 
5140 260 4375 1050 4100 410 810 3740 3300 
4960 240 4200 990 3960 395 790 3600 3120 
4720 230 3700 900 3810 370 720 3300 3060 
5200 260 4390 1090 4120 410 830 3179 3300 

 
 
values: the values that minimize the sum of the square of all each measured value and its corresponding 
best value.  For the above problem, this is computed as follows: 
 

 f =      
n

2 2 2

i i i
i 1

A A B B I I


         (11.55) 

 
Where the bar indicate the best values of each flow rate and n the total rows of data.  The squaring of each 
term assures all errors (positive or negative) always contribute to the measure of best rather than 
canceling.   The best values are easily determined using Microsoft Excel Solver as shown in Example 
11e. 
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Example 11e 
 
Use Solver to find the best values for each flow in Table 3. 
 
Solution 
Table 4 shows the Microsoft Excel worksheet setup to compute the sum of the sum of the square of the 
errors for arbitrarily selected starting values for each flow rate.  The first row contains names of each flow 
stream. The second row contains the arbitrarily-selected starting values of the independent variables.  The 
bold values are dependent on the other, independent variables in accordance with Eqs. (11.51) - (11.54).  
Other combinations of dependent variables could have been selected and computed from these four 
constraining equations, but any combination has yields the same result.  
 
The next five rows of the table are the measured data also shown in Table 4.  The lower block of numbers 
contains the square of each measured value minus the corresponding column’s first row values, which are 
to be changed to minimize the sum of all the squares of the difference appearing at the bottom of the 
table.  Solver is used to search the independent values of A, B, C, F, and H so as to minimize the sum of 
the square of the differences.  This yields the least-squares fit of the data while satisfying the constraints 
in Eqs. (11.51) - (11.54).  Figure 11 shows the Solver setup and Table 5 shows the results of enacting it.  
There is no need to constrain all the flow rates to be ≥ 0 since there is no scenario in which making flow 
rates negative would improve the least-square objective. 
 
  
 Table 4. Data Adjustment Error Determination  

 

A B C D E F G H I
1 1 1 1 0 1 0 1 0

5050 255 4200 1000 4040 395 810 3575 3180
5140 260 4375 1050 4100 410 810 3740 3300
4960 240 4200 990 3960 395 790 3600 3120
4720 230 3700 900 3810 370 720 3300 3060
5200 260 4390 1090 4120 410 830 3179 3300

Diff's ^2

3.E+07 6.E+04 2.E+07 1.E+06 2.E+07 2.E+05 7.E+05 1.E+07 1.E+07
3.E+07 7.E+04 2.E+07 1.E+06 2.E+07 2.E+05 7.E+05 1.E+07 1.E+07
2.E+07 6.E+04 2.E+07 1.E+06 2.E+07 2.E+05 6.E+05 1.E+07 1.E+07
2.E+07 5.E+04 1.E+07 8.E+05 1.E+07 1.E+05 5.E+05 1.E+07 9.E+06
3.E+07 7.E+04 2.E+07 1.E+06 2.E+07 2.E+05 7.E+05 1.E+07 1.E+07

Sum of 
Diff's ^2 4.E+08  
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 Figure 11.  Solver Setup for Data Adjustment 
 
 
 Table 5.  Optimized Data Adjustment Values 

A B C D E F G H I
4999 222 4200 1021 3977 354 810 3521 3167
5050 255 4200 1000 4040 395 810 3575 3180
5140 260 4375 1050 4100 410 810 3740 3300
4960 240 4200 990 3960 395 790 3600 3120
4720 230 3700 900 3810 370 720 3300 3060
5200 260 4390 1090 4120 410 830 3179 3300

Diff's ^2

3.E+03 1.E+03 2.E-01 5.E+02 4.E+03 2.E+03 8.E-02 3.E+03 2.E+02
2.E+04 1.E+03 3.E+04 8.E+02 2.E+04 3.E+03 8.E-02 5.E+04 2.E+04
1.E+03 3.E+02 2.E-01 1.E+03 3.E+02 2.E+03 4.E+02 6.E+03 2.E+03
8.E+04 6.E+01 2.E+05 1.E+04 3.E+04 3.E+02 8.E+03 5.E+04 1.E+04
4.E+04 1.E+03 4.E+04 5.E+03 2.E+04 3.E+03 4.E+02 1.E+05 2.E+04

Sum of 
Diff's ^2 8.E+05  

 
 
11.7 –Regression Analysis 
Regression analysis is used to obtain a best fit using the least squares concept.  Data adjustment is a 
specialized application of regression analysis but the most common use is curve fitting.  Most students 
have curve fitting tools on their handheld calculators.  They may also use the Add Trendline feature of 
Microsoft Excel®.  These tools are very useful but limit the user to select from a limit number of functions 
such as polynomial, power, and logarithmic. Few, if any, of these tools would allow one to find the 
optimal coefficients to an equation such as  
 
 2y ax bln(x) c      (11.56) 
 
When a set of many (x, y) data pairs is known. Solver will allow the determination of the Least-Squares 
Fit as shown in Example 11f. 
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Example 11f 
 
Use Solver to find the best fit coefficients for the function 
 
 2y ax bln(x) c      (11.57) 
  
Given    

x     f(x) 

1.0 5.000 
1.6 1.529 
2.7 5.006 
4.0 1.613 

13.0 0.435 
27.0 -0.295 

 
Solution 
Table 6 shows the Microsoft Excel worksheet setup to compute the sum the square of the difference 
between the measured data (in column 2) and the computed value of the function using the current values 
of the coefficients a = b = c = 1 (in column 3).   Solver is use to minimize the sum of the square of the 
errors by changing the values of a, b, and c. Figure 12 shows the Solver setup and Table 7 is the optimal 
solution but still it is not perfect since the sum of the squares is not zero. 
 
 Table 6.  Starting Sum of the Square of the Errors. 

a 1       
b 1     
c 1     
       

x f(x) f(x)_calc Error Squared   
1.0 5.0000 2.00 9.000   
1.6 1.5300 4.03 6.250   
2.7 5.0067 9.28 18.29   
4.0 1.6137 18.39 281.3   
13.0 0.4351 172.56 29629   
27.0 -0.2958 733.30 538157   

      568100 Sum 
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 Table 7.  Curve Fit Results f(x) = 0.00035 -1.481ln(x) +4.301 

a 0.00035
b -1.481
c 4.301

x f(x) f(x)_calc Error Squared
1.0 5.000 4.311 0.475
1.6 1.529 3.617 4.359
2.7 5.006 2.845 4.669
4.0 1.613 2.267 0.428

13.0 0.435 0.570 0.018
27.0 -0.295 -0.345 0.003

9.952 Sum  


