South Dakota School of Mines and Technology Department of Materials and Metallurgical Engineering

MET 321 Calculations Lab #2 05-07

2013S

- 5. One hundred tons of molten, hard lead in an iron kettle contains 97.4% Pb and 2.6 % Sb. The lead is to be softened by removing the antimony by the addition of 2.6 tons of PbO, which will promote the formation of Sb₂O₃. The oxides will float as a slag on the metal phase. After processing the lead, the slag phase is found to contain 22 % Sb.
 - a) What is final % Sb in the metallic product?
 - b) Will the slag be a solid or a liquid phase?
- 6. One hundred tons of flotation concentrate are roasted per hour using dry air. The concentrate contains 74.5% ZnS, 10.5% PbS, and 5% FeS₂. The balance is gangue. The metallic elements are converted to ZnO, Fe₃O₄, and PbO while the S reports to the gas phase containing 5% SO₂ and 2 % SO₃.
 - a) How much air in STP ft³/hr is needed?
 - b) What is the excess air, as percent, being supplied to the roaster compared to the air needed just to form the specified metal oxides and SO₂?
 - c) What is the exit gas analysis?
 - d) If the S in the gas leaving the flue is all converted to sulfuric acid, how many tons/hr of the acid is produced?
- 7. Determine the mineralogic analysis of mixture of chalcopyrite, pyrite, and chalcocite if the atomic analysis from the SEM is

41% S 30% Fe Bal Cu

.

Metal	Mineral	Formula
Iron	Magnetite	Fe ₃ O ₄
	Hematite	Fe_2O_3
	Limonite	2Fe ₂ O ₃ •3H ₂ O
	Siderite	FeCO ₃
	Pyrite	FeS ₂
Copper	Native Copper	Cu
	Chalcocite	Cu ₂ S
	Covellite	CuS
	Chalcopyrite	CuFeS ₂
	Cuprite	Cu ₂ O